首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   104篇
  免费   18篇
  国内免费   44篇
地球物理   28篇
地质学   130篇
天文学   1篇
自然地理   7篇
  2024年   1篇
  2023年   4篇
  2022年   4篇
  2021年   9篇
  2020年   9篇
  2019年   8篇
  2018年   4篇
  2017年   7篇
  2016年   9篇
  2015年   4篇
  2014年   7篇
  2013年   16篇
  2012年   4篇
  2011年   3篇
  2010年   3篇
  2009年   5篇
  2008年   9篇
  2007年   11篇
  2006年   10篇
  2005年   8篇
  2004年   3篇
  2003年   2篇
  2002年   7篇
  2001年   5篇
  2000年   3篇
  1999年   2篇
  1998年   1篇
  1997年   3篇
  1995年   2篇
  1993年   2篇
  1954年   1篇
排序方式: 共有166条查询结果,搜索用时 31 毫秒
1.
王先美 《地质学报》2008,82(1):1258-1273
鲁西隆起区发育有大量的北西向脆性断裂。依据野外断裂构造的几何学、运动学详细解析认为,北西向断裂系经历了早期的右行压剪、右行张剪,以及后期的左行压剪等不同性质的构造活动。由与北西向断裂活动相伴生的同期侵入岩体的 K-Ar测试结果分析,北西向断裂系在距今约160 Ma及距今130~110 Ma分别经历了右行压剪与右行张剪构造活动;通过分布在隆起区不同样品的磷灰石裂变径迹数据分析、冷却史反演,厘定鲁西地体在距今90~80 Ma存在一次区域性快速冷却构造事件,该构造事件与北西向断裂系的左行压剪构造活动相对应。  相似文献   
2.
Vertical displacements on the SW–NE Têt fault (Eastern Pyrenees Axial Zone, France), which separates the Variscan Canigou-Carança and Mont-Louis massifs, were constrained using a thermochronologic multi-method approach. 40Ar/39Ar data from the granitic Mont-Louis massif record its Variscan cooling history and reveal no ages younger than Early Cretaceous, while the Canigou-Carança gneiss massif records systematically younger 40Ar/39Ar ages. These younger 40Ar/39Ar ages in the Canigou-Carança gneiss massif are the result of partial to total rejuvenation of argon isotopic systems related to a thermal flow coeval with the Cretaceous HT-BP metamorphism in the North Pyrenean Zone. Only the deepest rocks from the Canigou-Carança suffered this extensive Mid-Cretaceous thermal overprint probably due to differential burial around 4 km at that time. The post Mid-Cretaceous vertical displacements along the Têt fault are recorded by “low” temperature thermochronology using K-feldspar 40Ar/39Ar, zircon and apatite fission track and (U–Th)/He datings. The Mont-Louis granite samples experienced a long period of protracted cooling reflecting a lack of thermo-tectonic activity in this area from Late Palaeozoic to Early Cenozoic, followed by cooling from 55–60 Ma to Late Eocene at a mean rate of 15–20°C/Ma in the final stage. This cooling stage corresponds to Têt fault reactivation with a reversed component, promoting exhumation of the Mont-Louis roof zone contemporaneously with the south-vergent Pyrenean thrusting. In the Canigou-Carança massif, the main cooling event occurred from 32 to 18 Ma at a maximum rate of 30°C/Ma during Early Oligocene followed by a more moderate rate of 3°C/Ma from Late Oligocene to Early Burdigalian, coeval with the normal reactivation of the Têt fault in brittle conditions that accommodated the final exhumation of the massif during the opening of the Gulf of Lion.  相似文献   
3.
Fission-track cooling ages of detrital apatite (AFT) in the East Alpine Molasse Basin display age groups corresponding to geodynamic events in the orogen since Jurassic times. These age groups are typical of certain thermotectonic units, which formed a patchwork in the Swiss and Eastern Alps. By a combination of petrographic and thermochronologic data, progressive erosion of source terrains is monitored in different catchments since the Oligocene. The AFT cooling ages show a decrease in lag time until when rapidly cooled debris derived from tectonically exhumed core complexes became exposed. After termination of tectonic exhumation, lag times of debris derived from the core complexes increased. Neither on the scale of the entire Eastern Alps, or on the scale of individual catchments, steady-state exhumation is observed, due to the highly dynamic changes of exhumation rates since Late Eocene collision.  相似文献   
4.
李勇  ALDENSMORE  周荣军  MA  ELLIS 《地质学报》2005,79(5):608-615
龙门山是青藏高原东缘边界山脉,具有青藏高原地貌、龙门山高山地貌和山前冲积平原三个一级地貌单元。利用数字高程模式图像和裂变径迹年代测定方法研究和计算龙门山晚新生代剥蚀厚度与剥蚀速率,结果表明:3.6 Ma以来龙门山的剥蚀厚度介于1.91-2.16 km之间,剥蚀速率介于0.53-0.60 mm/a之间。在此基础上,开展了该地区岩石圈的弹性挠曲模拟,结果表明龙门山的隆升机制具有以构造缩短隆升和剥蚀卸载隆升相叠合的特点。3.6 Ma之前,龙门山的隆升与逆冲推覆构造负载有关,以构造缩短驱动的构造隆升为特色;3.6 Ma之后,龙门山的隆升与剥蚀卸载驱动的抬升有关,并以剥蚀卸载隆升为特色,进而提出了龙门山晚新生代以来的隆升机制以剥蚀成山作用为主的认识。  相似文献   
5.
Namibia's passive continental margin records a long history of tectonic activity since the Proterozoic. The orogenic belt produced during the collision of the Congo and Kalahari Cratons in the Early Proterozoic led to a zone of crustal weakness, which became the preferred location for tectonism during the Phanerozoic. The Pan-African Damara mobile belt forms this intraplate boundary in Namibia and its tectonostratigraphic zones are defined by ductile shear zones, where the most prominent is described as the Omaruru Lineament–Waterberg Thrust (OML–WT). The prominance of the continental margin escarpment is diminished in the area of the Central and Northern Zone of the Damara belt where the shear zones are located. This area has been targeted with a set of 66 outcrop samples over a 550-km-long, 60-km-broad coast-parallel transect from the top of the escarpment in the south across the Damara sector to the Kamanjab Inlier in the north. Apatite fission track age and length data from all samples reveal a regionally consistent cooling event. Thermal histories derived by forward modelling bracket this phase of accelerated cooling in the Late Cretaceous. Maximum palaeotemperatures immediately prior to the onset of cooling range from ca. 120 to ca. 60 °C with the maximum occurring directly south of the Omaruru Lineament. Because different palaeotemperatures indicate different burial depth at a given time, the amount of denudation can be estimated and used to constrain vertical displacements of the continental crust. We interpret this cooling pattern as the geomorphic response to reactivation of basement structures caused by a change in spreading geometry in the South Atlantic and South West Indian Oceans.  相似文献   
6.
Lake Teletskoye occupies a narrow graben located in the northwestern sector of the Altai fold belt in South Siberia. The lake basin is thought to have formed during the Pleistocene as a distant result of the Cenozoic collision of India and Eurasia that caused a tectonic reactivation of the Palaeozoic Gorny–Altai (GA) and West Sayan (WS) blocks.The present work reports of a pilot fission-track study performed on 13 apatite separates collected from rocks that were sampled along two profiles in close proximity of the lake. The age–length data and AFT thermochronological modelling reveal two important phases of cooling in the Altai Mountains, a first one during the Late Jurassic–Early Cretaceous and a second one that started in the Miocene–Pliocene and that persists until today. The first event is interpreted to result from uplift-induced denudation probably related to the closure of the Mongol–Okhotsk Ocean; the second event can be linked to the young Cenozoic movements that lie at the origin of the formation of the Lake Teletskoye basin.  相似文献   
7.
To constrain the post-Pan-African evolution of the Arabian–Nubian Shield, macro-scale tectonic studies, paleostress and fission track data were performed in the Eastern Desert of Egypt. The results provide insights into the processes driving late stage vertical motion and the timing of exhumation of a large shield area. Results of apatite, zircon and sphene fission track analyses from the Neoproterozoic basement indicate two major episodes of exhumation. Sphene and zircon fission track data range from 339 to 410 Ma and from 315 to 366 Ma, respectively. The data are interpreted to represent an intraplate thermotectonic episode during the Late Devonian–Early Carboniferous. At that time, the intraplate stresses responsible for deformation, uplift and erosion, were induced by the collision of Gondwana with Laurussia which started in Late Devonian times. Apatite fission track data indicate that the second cooling phase started in Oligocene and was related to extension, flank uplift and erosion along the actual margin of the Red Sea. Structural data collected from Neoproterozoic basement, Late Cretaceous and Tertiary sedimentary cover suggest two stages of rift formation. (1) Cretaceous strike-slip tectonics with sub-horizontal σ1 (ENE/WSW) and σ3 (NNW/SSE), and sub-vertical σ2 resulted in formation of small pull-apart basins. Basin axes are parallel to the trend of Pan-African structural elements which acted as stress guides. (2) During Oligocene to Miocene the stress field changed towards horizontal NE–SW extension (σ3), and sub-vertical σ1. Relations between structures, depositional ages of sediments and apatite fission track data indicate that the initiation of rift flank uplift, erosion and plate deformation occurred nearly simultaneously.  相似文献   
8.
Multi-method thermochronology applied to the Peake and Denison Inliers (northern South Australia) reveals multiple low-temperature thermal events. Apatite fission track (AFT) data suggest two main time periods of basement cooling and/or reheating into AFT closure temperatures (~60–120°C); at ca 470–440 Ma and ca 340–300 Ma. We interpret the Ordovician pulse of rapid basement cooling as a result of post-orogenic cooling after the Delamerian Orogeny, followed by deformation related to the start of the Alice Springs Orogeny and orocline formation relating to the Benambran Orogeny. This is supported by a titanite U/Pb age of 479 ± 7 Ma. Our thermal history models indicate that subsequent denudation and sedimentary burial during the Devonian brought the basement rocks back to zircon U–Th–Sm/He (ZHe) closure temperatures (~200–150°C). This period was followed by a renewal of rapid cooling during the Carboniferous, likely as the result of the final pulses of the Alice Springs Orogeny, which exhumed the inlier to ambient surface temperatures. This thermal event is supported by the presence of the Mount Margaret erosion surface, which indicates that the inlier was exposed at the surface during the early Permian. During the Late Triassic–Early Jurassic, the inlier was subjected to minor reheating to AFT closure temperatures; however, the exact timing cannot be deduced from our dataset. Cretaceous apatite U–Th–Sm/He (AHe) ages coupled with the presence of contemporaneous coarse-grained terrigenous rocks suggest a temporally thermal perturbation related with shallow burial during this time, before late Cretaceous exhumation cooled the inliers back to ambient surface temperatures.  相似文献   
9.
The Cenozoic sedimentation in the Tianshui basin, which is located at the junction of the liupanshan and West Qinling, northeast margin of the Tibetan plateau, provides a record for the regional tectonism and exhumation history of the surrounding mountains. Thermochronologic study on the detrital apatite grains from sandstones at Yaodian, near Tianshui, has revealed two rapid tectonic uplift-exhumation events of the source area, which happened at 23.7 and 14.1 Ma, respectively. The fast exhumation (0.34 mm/a) at 23.7 Ma, which recorded the tectonic uplift of West Qinling, led to the formation of the Neogene Tianshui basin and initiated the reception of alluvial deposits. This event is most likely in response to the synchronous tectonism of the Tibetan plateau. The source region experienced another rapid exhumation (1.05 mm/a) at 14.1 Ma, when the Tianshui basin began to depress broadly and fluvial-lacustrine sediments dominated the Late Miocene. Translated from Acta Sedimentologica Sinica, 2006, 24(6): 783–789 [译自: 沉积学报]  相似文献   
10.
Research in landscape evolution over millions to tens of millions of years slowed considerably in the mid‐20th century, when Davisian and other approaches to geomorphology were replaced by functional, morphometric and ultimately process‐based approaches. Hack's scheme of dynamic equilibrium in landscape evolution was perhaps the major theoretical contribution to long‐term landscape evolution between the 1950s and about 1990, but it essentially ‘looked back’ to Davis for its springboard to a viewpoint contrary to that of Davis, as did less widely known schemes, such as Crickmay's hypothesis of unequal activity. Since about 1990, the field of long‐term landscape evolution has blossomed again, stimulated by the plate tectonics revolution and its re‐forging of the link between tectonics and topography, and by the development of numerical models that explore the links between tectonic processes and surface processes. This numerical modelling of landscape evolution has been built around formulation of bedrock river processes and slope processes, and has mostly focused on high‐elevation passive continental margins and convergent zones; these models now routinely include flexural and denudational isostasy. Major breakthroughs in analytical and geochronological techniques have been of profound relevance to all of the above. Low‐temperature thermochronology, and in particular apatite fission track analysis and (U–Th)/He analysis in apatite, have enabled rates of rock uplift and denudational exhumation from relatively shallow crustal depths (up to about 4 km) to be determined directly from, in effect, rock hand specimens. In a few situations, (U–Th)/He analysis has been used to determine the antiquity of major, long‐wavelength topography. Cosmogenic isotope analysis has enabled the determination of the ‘ages’ of bedrock and sedimentary surfaces, and/or the rates of denudation of these surfaces. These latter advances represent in some ways a ‘holy grail’ in geomorphology in that they enable determination of ‘dates and rates’ of geomorphological processes directly from rock surfaces. The increasing availability of analytical techniques such as cosmogenic isotope analysis should mean that much larger data sets become possible and lead to more sophisticated analyses, such as probability density functions (PDFs) of cosmogenic ages and even of cosmogenic isotope concentrations (CICs). PDFs of isotope concentrations must be a function of catchment area geomorphology (including tectonics) and it is at least theoretically possible to infer aspects of source area geomorphology and geomorphological processes from PDFs of CICs in sediments (‘detrital CICs’). Thus it may be possible to use PDFs of detrital CICs in basin sediments as a tool to infer aspects of the sediments' source area geomorphology and tectonics, complementing the standard sedimentological textural and compositional approaches to such issues. One of the most stimulating of recent conceptual advances has followed the considerations of the relationships between tectonics, climate and surface processes and especially the recognition of the importance of denudational isostasy in driving rock uplift (i.e. in driving tectonics and crustal processes). Attention has been focused very directly on surface processes and on the ways in which they may ‘drive’ rock uplift and thus even influence sub‐surface crustal conditions, such as pressure and temperature. Consequently, the broader geoscience communities are looking to geomorphologists to provide more detailed information on rates and processes of bedrock channel incision, as well as on catchment responses to such bedrock channel processes. More sophisticated numerical models of processes in bedrock channels and on their flanking hillslopes are required. In current numerical models of long‐term evolution of hillslopes and interfluves, for example, the simple dependency on slope of both the fluvial and hillslope components of these models means that a Davisian‐type of landscape evolution characterized by slope lowering is inevitably ‘confirmed’ by the models. In numerical modelling, the next advances will require better parameterized algorithms for hillslope processes, and more sophisticated formulations of bedrock channel incision processes, incorporating, for example, the effects of sediment shielding of the bed. Such increasing sophistication must be matched by careful assessment and testing of model outputs using pre‐established criteria and tests. Confirmation by these more sophisticated Davisian‐type numerical models of slope lowering under conditions of tectonic stability (no active rock uplift), and of constant slope angle and steady‐state landscape under conditions of ongoing rock uplift, will indicate that the Davis and Hack models are not mutually exclusive. A Hack‐type model (or a variant of it, incorporating slope adjustment to rock strength rather than to regolith strength) will apply to active settings where there is sufficient stream power and/or sediment flux for channels to incise at the rate of rock uplift. Post‐orogenic settings of decreased (or zero) active rock uplift would be characterized by a Davisian scheme of declining slope angles and non‐steady‐state (or transient) landscapes. Such post‐orogenic landscapes deserve much more attention than they have received of late, not least because the intriguing questions they pose about the preservation of ancient landscapes were hinted at in passing in the 1960s and have recently re‐surfaced. As we begin to ask again some of the grand questions that lay at the heart of geomorphology in its earliest days, large‐scale geomorphology is on the threshold of another ‘golden’ era to match that of the first half of the 20th century, when cyclical approaches underpinned virtually all geomorphological work. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号