首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   107篇
  免费   9篇
  国内免费   5篇
地球物理   8篇
地质学   97篇
海洋学   11篇
天文学   1篇
自然地理   4篇
  2023年   2篇
  2022年   1篇
  2021年   1篇
  2020年   8篇
  2019年   3篇
  2018年   7篇
  2017年   6篇
  2016年   1篇
  2015年   4篇
  2014年   3篇
  2013年   10篇
  2012年   2篇
  2011年   5篇
  2010年   4篇
  2009年   7篇
  2008年   3篇
  2007年   3篇
  2006年   2篇
  2005年   2篇
  2004年   7篇
  2003年   8篇
  2002年   6篇
  2001年   4篇
  2000年   5篇
  1999年   4篇
  1998年   4篇
  1997年   2篇
  1996年   1篇
  1995年   3篇
  1992年   1篇
  1991年   1篇
  1988年   1篇
排序方式: 共有121条查询结果,搜索用时 15 毫秒
1.
晚白垩世中国东南沿岸山系与中南地区的沙漠和盐湖化   总被引:25,自引:3,他引:25  
陈丕基 《地层学杂志》1997,21(3):203-213
晚白垩世在中国东南沿古太平洋西岸地区形成了一条巨大的沿岸山系,其山峰高度在3500—4000m之间,东西宽度近500km,挡住了东来的暖湿气流,使中南地区云梦泽内陆水域的广大平原和丘陵地变成了一个热带—亚热带干旱、炎热的半沙漠和盐湖地区,这一古地理和古气候格局一直持续到早第三纪末才开始改变。  相似文献   
2.
The microstructures of turbiditic and hemipelagic muds and mudstones were investigated using a scanning electron microscope to determine whether there are microstructural features that can differentiate turbiditic from hemipelagic sedimentary processes. Both types of muddy deposits are, in general, characterized by randomly‐oriented clay particles. However, turbiditic muds and mudstones also characteristically contain aggregates of ‘edge‐to‐face’ contacts between clay particles with long‐axis lengths of up to 30 μm. Based on observations of the clay fabric of the experimentally‐formed muds settled from previously agitated muddy fluids, these types of aggregates, hereafter referred to as ‘aggregates of clay particles’, are interpreted as having been formed by the collision of component flocs in turbulent fluids. Furthermore, some aggregates of clay particles have ‘face‐to‐face’ contacts between clay particles; this is similar to face‐to‐face aggregates characteristically developed in fluid‐mud deposits that are commonly recognized only in turbiditic mudstones, indicating the possibility of a final stage of deposition under highly‐dense conditions, such as temporary fluid muds. In conjunction with earlier proposed lithofacies‐based and ichnofacies‐based criteria, aggregates of clay particles should be useful for the differentiation of turbiditic and hemipelagic muddy deposits, particularly with limited volumes of non‐oriented samples from deep‐water successions.  相似文献   
3.
新疆中库鲁克塔格地区震旦系扎摩克提组沉积特征   总被引:3,自引:0,他引:3  
扎摩克提组位于中库鲁克塔格震旦系上统底部,由砂岩、粉砂岩和泥页岩构成韵律武沉积,为不完整的玛鲍序列.砂岩层底面普遍发育槽模等底痕.有些砂岩呈纹层状,并有滑动构造和包卷层理等.构成砂岩的碎屑颗粒分选性差.根据粒度分布概率图、C-M图和碳、氧、硫等稳定同位素及Sr/Ba比值、硼含量等显示,该组形成于淡化海槽中.  相似文献   
4.
Turbidite bed thickness distributions are often interpreted in terms of power laws, even when there are significant departures from a single straight line on a log–log exceedence probability plot. Alternatively, these distributions have been described by a lognormal mixture model. Statistical methods used to analyse and distinguish the two models (power law and lognormal mixture) are presented here. In addition, the shortcomings of some frequently applied techniques are discussed, using a new data set from the Tarcău Sandstone of the East Carpathians, Romania, and published data from the Marnoso‐Arenacea Formation of Italy. Log–log exceedence plots and least squares fitting by themselves are inappropriate tools for the analysis of bed thickness distributions; they must be accompanied by the assessment of other types of diagrams (cumulative probability, histogram of log‐transformed values, q–q plots) and the use of a measure of goodness‐of‐fit other than R2, such as the chi‐square or the Kolmogorov–Smirnov statistics. When interpreting data that do not follow a single straight line on a log–log exceedence plot, it is important to take into account that ‘segmented’ power laws are not simple mixtures of power law populations with arbitrary parameters. Although a simple model of flow confinement does result in segmented plots at the centre of a basin, the segmented shape of the exceedence curve breaks down as the sampling location moves away from the basin centre. The lognormal mixture model is a sedimentologically intuitive alternative to the power law distribution. The expectation–maximization algorithm can be used to estimate the parameters and thus to model lognormal bed thickness mixtures. Taking into account these observations, the bed thickness data from the Tarcău Sandstone are best described by a lognormal mixture model with two components. Compared with the Marnoso‐Arenacea Formation, in which bed thicknesses of thin beds have a larger variability than thicknesses of the thicker beds, the thinner‐bedded population of the Tarcău Sandstone has a lower variability than the thicker‐bedded population. Such differences might reflect contrasting depositional settings, such as the difference between channel levées and basin plains.  相似文献   
5.
Results of lithostratigraphic and mineral magnetic analysis of two surficial sediment cores (21 cm and 45 cm in length) collected from the Southern basin of Lake Baikal at a water depth of 1390 m, are presented. The sediments have been measured for a wide range of mineral magnetic parameters in order to assess their value in the identification of turbidite layers. Particle size and geochemical data are also presented and these explain some of the down core variations in magnetic mineralogy. It is suggested that changes in the particle size frequency distributions down core may be related to fossil diatom shells. One of the cores has been dated using 210Pb. The sediment cores were cross-correlated using low frequency magnetic susceptibility (f) and these cores can also be correlated with a nearby core collected earlier in 1992. Changes in the magnetic parameters of lf, IRMs and HIRM210 suggest that there are significant changes in the concentration of ferrimagnetic minerals in the sediment cores, indicating changing sediment sources and/or increasing concentrations of spheroidal carbonaceous particles and the dissolution of minerals through reduction below the oxidised layer within the sediment core.  相似文献   
6.
Deep‐water sediments in the Molasse Basin, Austria, were deposited in a narrow foreland basin dominated by a large channel belt located between the steep Alpine fold and thrust belt to the south and the gentler northern slope off the Bohemian Massif. Several gas fields occur outside the channel belt, along the outer bend of a large meander. Accumulation of these overbank sediments reflects a complicated interplay between slope accommodation and debris‐flow and turbidity‐flow interaction within the channel. The tectonically oversteepened northern slope of the basin (ca 2 to 3°) developed a regionally important erosional surface, the Northern Slope Unconformity, which can be traced seismically for >100 km in an east–west direction and >20 km from the channel to the north. The slope preserves numerous gullies sourced from the north that eroded into the channel belt. These gullies were ca 20 km long, <1 km wide and ca 200 m deep. As the channel aggraded, largely inactive and empty gullies served as entry points into the overbank area for turbidity currents within the axial channel. Subsequently, debris‐flow mounds, 7 km wide and >15 km long, plugged and forced the main channel to step abruptly ca 7 km to the south. This resulted in development of an abrupt turn in the channel pathway that propagated to the east and probably played a role in forming a sinuous channel later. As debris‐flow topography was healed, flows spread out onto narrow area between the main channel and northern slope forming a broad fine‐grained apron that serves as the main gas reservoir in this area. This model of the overbank splay formation and the resulting stratigraphic architecture within the confined basin could be applied in modern and ancient systems or for subsurface hydrocarbon reservoirs where three‐dimensional seismic‐reflection data is limited. This study elucidates the geomorphology of the oversteepened slope of the under‐riding plate and its effects on the sedimentation.  相似文献   
7.
8.
The Crevillente Fault Zone (CFZ) comprises a system of northeast to southwest oriented dextral faults that extend for some 600 km in the External Zones of the Betic Cordillera (SE Spain). The magnitude of lateral displacement related to this fault zone is not well constrained, and it is considered to be between 20 and 400 km. The stratigraphical and sedimentological criteria used in this work have proven effective in quantifying the magnitude of the displacement along this structure. We have analysed an oolitic turbidite facies in the Middle Jurassic of the Sierra de Ricote (Median Subbetic of Murcia Province). A detailed revision of ooidal limestone outcrops has revealed that the source area of these deposits was to the Internal Subbetic zone, north of Vélez Rubio (Almería Province). These two tectonic units, the Median and Internal Subbetic, are currently 75 km from each other and separated by the CFZ. The conclusions arising from our stratigraphical, petrological and sedimentological studies favour interpretation of a 75–100 km lateral displacement. After restoring the Late Jurassic–Cretaceous anticlockwise rotation of Iberia, the CFZ appears to belong to the E–W palaeofault system that is related to the extension of the South Iberian Continental Margin (SICM). Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
9.
As the largest siliciclastic sink in the South China block, the Triassic Nanpanjiang basin is generally thought of as a foreland basin related to Indosinian collision between the South China and Indochina blocks. Our basin analysis, spanning an eight years period, provides details of Lopingian to Middle Triassic stratigraphic fill and tectonic subsidence of the basin. Field observation and sedimentological analyses reveal that the basin was not filled by a monotonous turbidite system and suggest instead the development of five primary depositional units constituted by deep-water turbidite systems, mass-transport deposits, condensed drapes, shallow-water isolated carbonate platforms, and volcano-volcaniclastic rocks. The stratigraphic completeness of the basin, the coexistence of widespread but localized carbonate platforms within axially filled deep-water basin, tectonically generated cyclothems of transverse mass-transport deposits along intrabasinal faults and basin fill of extrusive rocks of bimodal composition together apparently call in question the claim that crustal shortening prevailed during the Late Permian to pre-Norian Triassic. Patterns of basin fill, differential tectonic subsidence and very high subsidence rate of the region adjacent to master fault are more closely match the pattern expected for extensional to transtensional basin in a back-arc setting. The crustal extension in the southwestern South China was not consistent with hypothesized Indosinian collision between South China and Indochina blocks, but more likely developed in response to northwestward subduction of the paleo-Pacific plate. Our results, combined with regional considerations, lead to a new model for the Triassic tectonic evolution of South China during Triassic assembly of the southeastern and eastern Asia.  相似文献   
10.
Turbidity currents descending the slopes of deep‐water extensional basins or passive continental margins commonly encounter normal‐fault escarpments, but such large‐magnitude phenomena are hydraulically difficult to replicate at small scale in the laboratory. This study uses advanced computational fluid dynamics numerical simulations to monitor the response of large, natural‐scale unconfined turbidity currents (100 m thick and 2000 m wide at the inlet gate) to normal‐fault topography with a maximum relief of nearly 300 m. For comparative purposes, the turbidity current is first released on a non‐faulted pristine slope of 1·5° (simulation model 1). The expanding and waxing flow bypasses the slope without recognizable deposition within the visibility limit of 8 vol.% sand grain packing. Similar flow is then released towards the tip (model 2) and towards the centre (model 3) of a normal‐fault escarpment. In both of these latter models, the sand carried by flow tends to be entrapped in four distinct depozones: an upslope near‐gate zone of flow abrupt expansion and self‐regulation; a flow‐transverse zone at the fault footwall edge; a flow‐transverse zone at the immediate hangingwall; and a similar transverse zone near the crest of the hangingwall counter‐slope, where some of the deposited sand also tends to be reshuffled to the previous zone by a secondary reverse underflow. The near‐bottom reverse flow appears to be generated on a counter‐slope of 1·1°, increased to 2·0° by deposition. The Kelvin–Helmholtz interface instability plays an important role by causing three‐dimensional fluctuations in the flow velocity magnitude and sediment concentration. The thick deposits of large single‐surge flows may thus show hydraulic fluctuations resembling those widely ascribed to hyperpycnal flows. The study indicates further that the turbiditic slope fans formed on such fault topographies are likely to be patchy and hence may differ considerably from the existing slope‐fan conceptual models when it comes to the spatial prediction of main sand depozones.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号