首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   0篇
  国内免费   1篇
大气科学   1篇
地球物理   10篇
地质学   7篇
海洋学   2篇
自然地理   2篇
  2014年   1篇
  2011年   2篇
  2010年   1篇
  2008年   1篇
  2006年   1篇
  2005年   1篇
  2004年   2篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1998年   1篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
排序方式: 共有22条查询结果,搜索用时 15 毫秒
1.
 Surface contamination with radioactive caesium introduced into the environment after the accident at the Chernobyl nuclear plant was high enough in the Crimean Mountains to allow using radiocaesium as an indicator of penetration of radioactive contamination into a karst system. Caesium concentrations have been studied in soils above Marble Cave, Tchatyrdag Plateau, in percolation waters and in sediments transported by percolation waters within the cave. Contamination of the daylight surface with 137Cs is about 30 kqB m–2 which is approximately 13 times higher than the density of global fallouts. Besides 137Cs, almost all samples showed presence of 134Cs with the 137Cs/134Cs ratio close to that of Chernobyl contaminations. Concentrations of 137Cs range from 9 to 15 mBq l–1 in the present percolation waters in the cave. In sediments related to percolation waters 134Cs is detected in some samples besides 137Cs, although the effect of 228Ac is not ruled out. Surprisingly, the highest concentrations of radiocaesium were measured in "old" sediments in the cave's lower series. These sediments are not associated with modern percolation and are represented by a clay/moonmilk alternating sequence deposited in an old dried cave lake. Moonmilk layers have higher caesium content than clay. It is assumed that Chernobyl caesium was transported into the cave with aerosols which were then deposited mainly in areas where condensation occurs. The sampling site is located just in the boundary between two microclimatic zones with a temperature gradient of 0.5  °C. Active condensation processes occur in this area. Caesium was not detected in another similar sampling site (old lake deposits) located within homogeneous microclimatic conditions. If the above interpretation is correct, these results show the geochemical significance of the aerosol-condensation mechanism of mass transport and localisation. Received: 1 June 1995 · Accepted: 4 December 1995  相似文献   
2.
A137Cs-balance for the catchment of the River Öre in central northern Sweden which received about 30 kBq m–2 of radiocesium from the Chernobyl accident was calculated for the period 1986–1991. Altogether, slightly less than 10% of the total deposition in the catchment was estimated to be exported from the terrestrial parts during this period of time. More than 90% of this loss is transported with the River Öre to the outer sea of the Gulf of Bothnia. The retention in Lake Örträsket which is the only lake along the river course and the Öre Estuary outside the river mouth was thus slightly less than 10%. Nearly all of the radiocesium deposited in the lake is permanently retained in the sediments and successively covered with less radioactive sediment. A considerable export of radiocesium from the estuary to the outer sea takes place due to resuspension and subsequent transport by wind and wave generated currents.  相似文献   
3.
The 137Cs radioactivity of soils was used as a tracer of soil erosion in a catchment in the Netherlands: 143 samples were analysed to map the 137Cs redistribution using geostatistical interpolation methods. Caesium-137 activities on grassland are significantly higher than on arable land. Also, 137Cs activities on waning slopes are higher and activities on steep slopes are lower. The soil erosion estimates, derived from the 137Cs data, are used to validate the USLE erosion model. The recent Chernobyl nuclear accident also contributed to the 137Cs activity. However, the Chernobyl input of 137Cs, with a constant ratio of 1.765:1 to 134Cs, cannot be used as a tracer of soil erosion. Because of the rapid decay of 134Cs, we will not be possible to separate the sources of 137Cs in the near future in areas significantly influenced by Chernobyl fallout and in these areas 137Cs can no longer be used as a soil erosion tracer.  相似文献   
4.
The Chernobyl plume contaminated vast lands of Europe with radiocaesium (137Cs) in 1986 because of the deposition of radionuclides on the ground by wet and dry deposition processes. Nevertheless, in a nuclear emergency, contamination data may be very sparse and there is need to make rapid and scientifically supported decisions. Here we analyze the rainfall field, an important precursor of the wet deposition, during the passage of the plume. Thus, estimating rainfall spatial variability can help to identify possible contaminated areas and associated risks when rainfall exceeded a given threshold. In this paper, we show that the conditional probabilities of exceeding threshold rainfall values could be spatially assessed using the mutual benefits of linking geostatistical and geographical information system (GIS) to quantify the evaluation of the risk involved in decision making. In particular, the non-parametric geostatistic technique, termed Indicator Kriging (IK), enables one to efficiently estimate the probability that the true value exceeds the threshold values by means of the indicator coding transform. Afterward, GIS has been used to find the areas probably affected by wash-out (probability >0.5 that rainfall is above a certain threshold). The experimental study has been focused on a test site in Beneventan agroecosystem (Southern Italy) to model the spatial uncertainty over a continuous area from sparse rainfall data. This enabled to generate probability maps delineating area potentially affected by to contamination to be monitored after wet deposition of Chernobyl releases.  相似文献   
5.
全球变化背景下新疆地区气候跃变的可能影响因素分析   总被引:1,自引:0,他引:1  
李稚  李卫红  陈亚宁 《冰川冻土》2011,33(6):1302-1309
基于新疆过去50a气温和降水时间序列长期趋势的研究结果,结合对1986年及附近时段对全球气候产生重大影响的一系列事件(厄尔尼诺、火山爆发、核电站爆炸事故、温室气体增加等)的分析,探讨了1986年新疆气温和降水出现跳跃式变化的原因.具体表现为:当厄尔尼诺现象发生时,常常出现暖冬、早春,在该现象消退过程,往往降水有所增多;...  相似文献   
6.
7.
The aim of this work is to give a summary of the work on Cs-137 in Swedish lakes carried out mainly by our group (the Liming-mercury-caesium project) between 1986 and 1990. The focus is on results from extensive field experiments carried out in 41 lakes testing various remedial measures to speed up the natural recovery of Cs-137 in lakes: Lake liming and wet land liming with primary rock lime, sedimentary rock lime and so-called mixed lime, which also contains nutrients; potash treatment and intensive fishing. Selected results: The remedies have given the intended water-chemical response. None of the methods used works effectively as cure, i.e., no rapid and clear reduction in the concentrations of radioactive caesium in fish is obtained in comparison with lakes where the waterchemical or biological conditions are not changed. In lakes with long water turnover time and with low values of, foremost, conductivity, hardness and potassium, the fish had relatively higher concentrations at the same fallout levels. The differences present between the lakes as regards the continued magnitude of the change in concentration in fish can foremost be linked to factors controlling the secondary load (i.e., the internal loading and the input from the catchment). A successful potash treatment (in oligotrophic lakes) may imply that the natural recovery will be at the most 5% faster compared to no treatment. This would give quite positive implications in the long run since the ecological half-life for Cs-137 in pike (the top predator in these lake types) is very long. The time interval between the remedies and the latest fish analyses (about 2 years on average) is not sufficient to obtain (statistically) clear-cut results on these the small effects of the remedies. A longer time series of data is required for this.  相似文献   
8.
The deposition record of 137Cs was traced in the SE Black Sea sediments adjacent to the Coruh river mouth in comparison with the earlier studied chronology of 137Cs deposition in front of the Danube delta (NW Black Sea). In both cases, the 137Cs profiles showed two subsurface peaks attributable to maximum fallout of ‘bomb’ and Chernobyl radionuclides. The Coruh profile revealed a larger contribution of ‘bomb’ 137Cs in comparison with the Chernobyl input, suggesting different coverage of NW and SE Black Sea regions with the Chernobyl fallout. The 137Cs-derived dating showed that maximum deposition of particulate bound 137Cs in sediments adjacent to the Coruh river mouth was delayed for 14 yr relative to date of Chernobyl accident, reflecting a buffer effect of the watershed soils. This transit time is 3 times longer than in the Danube catchment area, indicating a difference in retention processes in these mountainous (Coruh) and lowland (Danube) river basins. The 137Cs profile in Coruh sediments showed penetration of 137Cs to much greater depth than would be expected from 137Cs fallout chronology, suggesting the sediment mixing rate of 1.3 cm2 yr−1. This value was used to evaluate deposition chronology of 137Cs, applying the model developed for pulse fallout case. Comparing the measured and modelled data has allowed differentiation of the flood-induced discharge of the 137Cs-containing suspended matter and the slower transit of eroded soil particles from the contaminated catchment areas. The obtained results may be used for the prediction of period when the pollutants, deposited over the river basins, can reach the Black Sea.  相似文献   
9.
The central area of the Russian Plain received substantial amounts Cs-137 fallout as a result of the Chernobyl accident in 1986, with inventories exceeding 40 kBq m−2 in many of the areas close to Chernobyl. Concern over the longer-term fate of this contamination has focused attention on the need to predict the post-fallout redistribution of the radiocaesium and, thus, future changes in the spatial distribution of contamination in the landscape. Since radiocaesium reaching the land surface as fallout is rapidly and strongly adsorbed by soil and sediment particles, any attempt to predict its post-fallout redistribution must focus on erosion and sediment delivery processes and must rely heavily on a knowledge of the geomorphological processes involved. This paper reports a detailed investigation of post-fallout Cs-137 redistribution in the 2.18-km2 Lapki catchment in the Middle-Russian Upland, which has required consideration of soil erosion processes, sediment delivery pathways, sediment delivery ratios and sediment sinks. The time elapsed since the Chernobyl accident is currently insufficient to result in significant reduction of Cs-137 inventories in eroding areas, but areas of deposition on both the lower slopes and on the balka sides and bottoms are already marked by significant increases in Cs-137 inventories. The results obtained emphasise that any attempt to develop meaningful predictions of the longer-term redistribution of Chernobyl-derived Cs-137 fallout within the Russian Plain must be based on a sound and detailed understanding of the linkage between the slopes and the balka systems and the fate of sediment entering the balka systems.  相似文献   
10.
Levels of Chernobyl radiocaesium found in the upland region of Galloway, south west Scotland were relatively high e.g. catchment mean134Cs inventories ranged from 5.72±2.64 kBq m2 to 8.72±1.46 kBq m2. The nuclear weapons test137Cs content of soils and peats was significantly augmented. Accurate assessment of spatial variations and temporal changes in the levels of contamination, however, are inhibited by its marked, short-range heterogeneity. No significant change in mean catchment inventories was detected over a twelve month period. Lake sediment inventories, however, were consistently enhanced from initially lower levels of contamination than their catchments' surfaces. Pre Chernobyl catchment and lake sediment137Cs inventories, however, show no such contrast. Both are substantially lower than rainfall based predictions. These observations of the relative levels of Chernobyl and pre-existing radiocaesium in watersheds and their waterbodies have important implications for both the assessment of the catchment and lake residence times of particle-associated contaminants and the use of lake sediment records as monitors of such pollutants.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号