首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   63篇
  免费   31篇
  国内免费   42篇
测绘学   1篇
地球物理   10篇
地质学   13篇
海洋学   69篇
综合类   15篇
自然地理   28篇
  2023年   1篇
  2022年   1篇
  2021年   3篇
  2020年   1篇
  2019年   3篇
  2018年   2篇
  2017年   5篇
  2016年   4篇
  2015年   9篇
  2014年   12篇
  2013年   3篇
  2012年   8篇
  2011年   3篇
  2010年   4篇
  2009年   2篇
  2008年   10篇
  2007年   13篇
  2006年   2篇
  2005年   20篇
  2004年   5篇
  2003年   11篇
  2002年   4篇
  2001年   7篇
  2000年   2篇
  1988年   1篇
排序方式: 共有136条查询结果,搜索用时 15 毫秒
1.
Using geographic information systems (GIS) software and geostatistical techniques, we utilized three decades of water-column chlorophyll a data to examine the relative importance of autochthonous versus allochthonous sources of reduced carbon to benthic communities that occur from the northern Bering to the eastern Beaufort Sea shelf. Spatial trend analyses revealed areas of high benthic biomass (>300 g m−2) and chlorophyll (>150 mg m−2) on both the southern and northern Chukchi shelf; both areas are known as depositional centers for reduced organic matter that originates on the Bering Sea shelf and is advected northward in Anadyr and Bering shelf water masses. We found a significant correlation between biomass and chlorophyll a in the Chukchi Sea, reflective of the strong benthic–pelagic coupling in a system that is utilized heavily by benthic-feeding marine mammals. In contrast, there was no significant correlation between biomass and chlorophyll in the Beaufort Sea, which by comparison, is considerably less productive (biomass and chlorophyll, <75 g m−2 and <50 mg m−2, respectively). One notable exception is an area of relatively high biomass (50–100 g m−2) and chlorophyll (80 mg m−2) near Barter Island in the eastern Beaufort Sea. Compared to other adjacent areas in the Beaufort Sea, the chlorophyll values in the vicinity of Barter Island were considerably higher and likely reflect a long-hypothesized upwelling in that area and close coupling between the benthos and autochthonous production. In the Bering Sea, a drop in benthic biomass in 1994 compared with previous measurements (1974–1993) may support earlier observations that document a decline in biomass that began between the 1980s and 1990s in the Chirikov Basin and south of St. Lawrence Island. The results of this study indicate that the benthos is an excellent long-term indicator of both local and physical advective processes. In addition, this work provides further evidence that secondary production on arctic shelves can be significantly augmented by reduced carbon advected from highly productive adjacent shelves.  相似文献   
2.
3.
The depth distributions of the radiolarian fauna in the Chukchi and Beaufort Seas, marginal seas of the western Arctic Ocean, were examined quantitatively in depth-stratified plankton tows from 4 or 5 intervals above 500 m and in surface sediments from various depths between 163 and 2907 m. The radiolarian assemblage from the water column in September 2000 was dominated by Amphimelissa setosa and followed by the Actinomma boreale/leptoderma group, Pseudodictyophimus gracilipes and Spongotrochus glacialis. These species are related to the Arctic Surface Water shallower than 150 m. This assemblage is similar to that in the Greenland Sea relating to the ice edge, but did not contain typical Pacific radiolarians in spite of the flow of water of Pacific origin in this region. The living depth of Ceratocyrtis historicosa was restricted to the relatively warm water between 300 and 500 m corresponding to the upper Arctic Intermediate Water (AIW) originating from the Atlantic Ocean. Radiolarian assemblages in the surface sediments are similar to those in the plankton tows, except for common Cycladophora davisiana in sediment samples below 500 m. C. davisiana is probably a deep-water species adapted to the lower AIW or the Canadian Basin Deep Water ventilated from the shelves.  相似文献   
4.
Phytoplankton pigments and size-fractionated biomass in the Chukchi and Beaufort Seas showed spatial and temporal variation during the spring and summer of 2002. Cluster analysis of pigment ratios revealed different assemblages over the shelf, slope and basin regions. In spring, phytoplankton with particle sizes greater than 5 μm, identified as diatoms and/or haptophytes, dominated over the shelf. Smaller (<5 μm) phytoplankton containing chlorophyll b, most likely prasinophytes, were more abundant over the slope and basin. Due to extensive ice cover at this time, phytoplankton experienced low irradiance, but nutrients were near maximal for the year. By summer, small prasinophytes and larger haptophytes and diatoms co-dominated in near-surface assemblages in largely ice-free waters when nitrate was mostly depleted. Deeper in the water column at 1–15% of the surface irradiance larger sized diatoms were still abundant in the upper nutricline. Phytoplankton from the shelf appeared to be advected through Barrow Canyon to the adjacent basin, explaining similar composition between the two areas in spring and summer. Off-shelf advection was much less pronounced for other slope and basin areas, which are influenced by the low-nutrient Beaufort gyre circulation, leading to a dominance of smaller prasinophytes and chlorophytes. The correlation of large-sized fucoxanthin containing phytoplankton with the higher primary production measurements shows promise for trophic status to be estimated using accessory pigment ratios.  相似文献   
5.
In the summers of 1999 and 2003, the 1st and 2nd Chinese National Arctic Research Expeditions measured the partial pressure of CO2 in the air and surface waters (pCO2) of the Bering Sea and the western Arctic Ocean. The lowest pCO2 values were found in continental shelf waters, increased values over the Bering Sea shelf slope, and the highest values in the waters of the Bering Abyssal Plain (BAP) and the Canadian Basin. These differences arise from a combination of various source waters, biological uptake, and seasonal warming. The Chukchi Sea was found to be a carbon dioxide sink, a result of the increased open water due to rapid sea-ice melting, high primary production over the shelf and in marginal ice zones (MIZ), and transport of low pCO2 waters from the Bering Sea. As a consequence of differences in inflow water masses, relatively low pCO2 concentrations occurred in the Anadyr waters that dominate the western Bering Strait, and relatively high values in the waters of the Alaskan Coastal Current (ACC) in the eastern strait. The generally lower pCO2 values found in mid-August compared to at the end of July in the Bering Strait region (66–69°N) are attributed to the presence of phytoplankton blooms. In August, higher pCO2 than in July between 68.5 and 69°N along 169°W was associated with higher sea-surface temperatures (SST), possibly as an influence of the ACC. In August in the MIZ, pCO2 was observed to increase along with the temperature, indicating that SST plays an important role when the pack ice melts and recedes.  相似文献   
6.
1IntroductionWiththerapiddevelopmentofhumansociety ,industrializationhasbeenspeededup .Asaresult,metalminingandmetallurgy ,coalandgasolinecombustionandchemicalsproductionhavegivenoffalotofPb containingindustrialpollutantswhichhavedonegreatharmtotheecolog…  相似文献   
7.
楚科奇海表层沉积物的生源组分及其对碳埋藏的指示意义   总被引:2,自引:2,他引:0  
工业革命以来大气中CO2浓度由280 ppm剧增至375 ppm,是导致全球气候变暖的主要原因[1]。海洋作为大气CO2的“汇”之一,每年可吸收人类释放CO2气体总量的30%,对全球碳循环的收支平衡有重要作用[2]。两极地区是CO2的主要汇区,也是全球变化的重要反馈窗口。因此,了解碳在北冰洋的生物地球化学循环过程是十分必要的[3-4]。海洋中的生源沉积物主要来自于海洋上层浮游生物碎屑的沉降,主要由蛋白石(以生物硅代替,BSi)、碳酸钙(CaCO3)和有机质(通常用有机碳替代,TOC)组成[5]。  相似文献   
8.
楚科奇海与加拿大海盆表层沉积物表观特征及其环境指示   总被引:1,自引:0,他引:1  
通过对中国首次和第二次北极科学考察采集的表层沉积物的观察,根据沉积物的颜色和气味、砾石分布、底栖生物及贝壳分布特征的分析,探讨了该海区表层沉积物表观特征变化与有机质输入、沉积物的氧化还原状态的关系、底栖生物分布范围、冰筏碎屑的分布区域及与海流的关系,指出在研究区软体动物生长的北界位于73.5&#176;N,比浮游动物的北界约低2个纬度。冰筏碎屑的北界可作为融冰水的北界或永久冰区的南界,位置在77&#176;24′N附近。通过对沉积物表观特征的综合分析,结合研究区的海流特征,指出研究区的海流分布对沉积物分布有重要影响,尤其是两股不同性质的海流相遇,对西南部与东部两个区域的沉积物组成及性质具有较强的控制作用。  相似文献   
9.
Summary of results from a high - resolution pan - Arctic ice - ocean model are presented for the northern North Pacific, Bering, Chukchi, and Beaufort seas. The main focus is on the mean circulation, communication from the Gulf of Alaska across the Bering Sea into the western Arctic Ocean and on mesoscale eddy activity within several important ecosystems. Model results from 1979 -2004 are compared to observations whenever possible. The high spatial model resolution at 1/12o (or -9 - km) in the horizontal and 45 levels in the vertical direction allows for representation of eddies with diameters as small as 36 km. However, we believe that upcoming new model integrations at even higher resolution will allow us to resolve even smaller eddies. This is especially important at the highest latitudes where the Rossby radius of deformation is as small as 10 km or less.  相似文献   
10.
The occurrence percentage and abundance of General Aerobic Hetero- trophic Bacteria (GAB) were determined by using the method of MPN for 182 sub- samples from 10 sediment cores taken from the Canadian basin and the Chukchi Sea at two different culturing temperatures. The results showed that the general occurrence percentage of GAB was quite high, average abundanees of GAB at cultured temperatares of 4℃ and 25℃ were 4.46 ×10^7 and 5.47×10^7 cells·g^-1(wt), respectively. The highest abundance of GAB occurred at 20 -22 cm section in the sediment. GAB abundances changed among the section of sediments, but there is a trend : the a-bundances at the middle or lower sections were lower than those at upper section. Cultivation at 25℃ could improve the occurrence percentage and abundances of GAB, which suggests that the increasing of temperature may change the living circum-stances of GAB. The differences of GAB among the latitudes areas indicated that occurrence percentage and abundances of GAB in middle latitude areas were higher than those in the higher or lower latitude areas, and were more obvious at 4℃ than those at 25℃. The GAB abundances in sediment under the shallower water seemed to be low- er than those in sediments under the deeper water and this status was more obvious at 25℃ than that at 4℃.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号