首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   42篇
  免费   2篇
  国内免费   7篇
大气科学   1篇
地球物理   23篇
地质学   12篇
海洋学   14篇
自然地理   1篇
  2023年   2篇
  2022年   1篇
  2019年   1篇
  2017年   2篇
  2016年   3篇
  2014年   2篇
  2013年   1篇
  2012年   2篇
  2011年   1篇
  2010年   3篇
  2009年   2篇
  2008年   4篇
  2007年   7篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
  2003年   2篇
  2002年   1篇
  2001年   2篇
  1999年   3篇
  1998年   2篇
  1997年   1篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1988年   1篇
  1978年   1篇
排序方式: 共有51条查询结果,搜索用时 515 毫秒
1.
Increasing concerns over habitat loss and rising costs of sea defence maintenance due to rising sea levels, has seen increases in the practice of managed realignment and reflooding of former reclaimed areas of intertidal saltmarsh and mudflat around the world. These practices are taking place with little knowledge of their impact on soil biogeochemical processes. Rates of denitrification (using the acetylene inhibition technique) and nitrous oxide (N2O) production were measured from a long-established saltmarsh (SM) and an adjacent, recently re-flooded managed realignment (MR) site comprising former arable land in the estuary of the River Torridge, Devon, UK. Incubations were carried out in closed chambers in which patterns of tidal flooding were simulated automatically. Measurements were made during periods of flood and non-flood over a total of four tidal inundations with estuarine water. During the latter two flooding episodes floodwater was amended with nitrate (NO3). Nitrous oxide production in the SM soil generally was lower than in the MR soil, with mean values and standard errors over the whole incubation of 0.27 ± 0.16 mg N2O-N m−2 h−1 and 0.65 ± 0.15 mg N2O-N m−2 h−1 respectively. Denitrification rates demonstrated a similar trend although generally were an order of magnitude higher than N2O production, with mean rates and standard errors of 2.88 ± 1.12 mg N2O-N m−2 h−1 in the SM soil and 3.39 ± 1.16 mg N2O-N m−2 h−1 in the MR soil. The data suggest that both soils are net sinks for NO3 and net sources for N2O. Both patterns of tidal inundation and floodwater chemistry affect the process rates in each soil differently. The impact of flooding with NO3 – amended water was greater on the SM soil than the MR soil, and it is likely that decomposing vegetation buried in the accreting sediments following reflooding at the MR site were supplying a source of N in the soil, and so process rates were less dependent upon external supplies. The act of managed realignment in intertidal zones could therefore result in an increase in mean production of N2O in intertidal zones, at least in the short term.  相似文献   
2.
全球冻融地区土壤是重要的N20释放源的综合分析   总被引:3,自引:0,他引:3  
N2O是重要的温室气体之一,它是微生物硝化作用和脱氮化作用过程的产物。有多种释放源,其中土壤圈是重要的释放源之一。在影响N2O释放通量的诸多因素中温度是关键因素之一。本文根据土壤冻融加强有机质矿化作用,以及对微生物群体产生非生物应力的性质,结合冻融地区土壤和冻土带湿地所具有的特征,进行综合分析,论述冻融地区土壤是重要的N2O释放源。  相似文献   
3.
Hudson River sediment microcosms from Piles Creek (PC), Piermont Marsh (PM), and Iona Island (II) were amended with ∼100 mM nitrate or sulfate to stimulate anaerobic bioremediation. Nitrate and sulfate decreased over two years of field incubation and the fraction of these losses due to diffusion to the water column was predicted using Fick’s law. Apparent diffusion (Dapp) values of 1-4 × 10−10 m2 s−1 predicted the majority of loss/gain from/to the sediments by 700 d, but not at all times. Effective diffusion (Deff) values predicted by the porosity function (Deff = Dmol ε4/3) were larger than those observed in the field, and field data indicates a cube power relationship: Deff = Dmol ε3. Dapp greatly increased in surficial layers at PM and PC in year two, suggesting that bioadvection caused by bioturbating organisms had occurred. The effects of bioturbation on transport to/from the sediments are modeled, and results can be applied to various sediment treatment scenarios such as capping.  相似文献   
4.
N2O concentrations and denitrification-related factors (NO3, SO4, dissolved organic carbon (DOC) and CO2) were investigated in the surface groundwater of a catchment in northern Germany, the Fuhrberger Feld Aquifer (FFA). We sampled 79 plots that were selected according to the three criteria of land use, historical land use conversion (1954–1995) and groundwater level. We sampled three sites within each plot. The sampling depth was 0.5 m below the groundwater surface.We found no indication for the occurrence of autotrophic denitrification in the surface groundwater. Heterotrophic denitrification was identified as the main process for N2O accumulation. The variability of N2O concentrations on the plot-scale was extremely high and was poorly explained by the three sampling criteria. Other denitrification-related variables such as NO3, SO4 and DOC were less variable. The selection criteria land use and groundwater level clearly influenced the order of magnitude of N2O concentrations in the surface groundwater. Under arable land, high NO3 concentrations resulted in high N2O concentrations. The surface groundwater under forest and pasture was almost NO3-free and had also very small N2O concentrations. Plots where the distance from the soil surface to the groundwater surface was large (>1 m up to 3.4 m) showed higher N2O concentrations in the surface groundwater than plots where the distance was small (<1 m). A larger distance from the soil surface to the groundwater leads to a longer residence time and more decomposition of DOC in the soil. Consequently the less bioavailable DOC could inhibit the efficiency of the heterotrophic denitrification in the groundwater, yielding more N2O. Elevated organic carbon levels in plots with historic land use conversion (pasture to arable) were very stable and did not influence N2O concentrations. The high within plot variability showed that an upscaling of N2O from the plot-scale to the catchment-scale is possible as long as the groundwater level regime and the land use do not change.  相似文献   
5.
Several methods for characterizing the occurrence and rate of nitrate attenuation were tested at a field site near Monument Valley, Arizona. Spatial and temporal nitrate concentration data collected from a transect of monitoring wells located along the plume centerline were analyzed to evaluate the overall rates of natural attenuation. The occurrence and rate of denitrification was evaluated through microcosm experiments, nitrogen isotopic fractionation analysis, and solute-transport modeling. First-order denitrification-rate coefficients calculated with each method were comparable. In addition, the composite natural attenuation rate coefficient was similar to the denitrification-rate coefficients, which suggests that microbially induced decay primarily controls nitrate attenuation at the site. This research highlights the benefits associated with a multiple-method approach for the characterization of natural attenuation.  相似文献   
6.
休伦湖Saginaw湾沉积物反硝化率的测定及其时空特征   总被引:9,自引:2,他引:7  
用N2生成法测定了北美休伦湖Saginaw湾1995年夏季7、8月份沉积物反硝化率,Saginaw湾内湾的沉积物反硝化率为16.0-39.6μmolN2/(m2·h),外湾沉积反硝化率为22.7 -26.1μmolN2/(m2·h),比较了不同湖泊沉积物反硝化率数值大小,指出休伦湖Saginaw湾水体现阶段的营养状况为贫-中营养水平.内外湾沉积物反硝化率数值波动大小与Saginaw河及休伦湖的影响有关;N2:TIN通量比值有不随采样时间的变化而变更等特性.在反硝化率测定过程中,反硝化率与O2消耗率之间有明显的正相关关系;沉积物上覆水中NH+4与NO-3之间通量值在变化趋势上有明显的负相关关系。  相似文献   
7.
A quantification of nitrifying and denitrifying bacteria present in different compartments (water, sediments, submerged macrophytes) of a treated sewage channel was made to estimate their influence on the nitrogen balance and to assess the significance of macrophytes for nitrification and nitrogen conversions in general. Considerable numbers of autotrophic and heterotrophic nitrifying and denitrifiying bacteria were found to be present in the epiphytic communities of different species of submerged macrophytes of a treated sewage channel. Comparing the influence of the different compartments on total stream nitrification and denitrification it could be concluded that dense beds of submerged macrophytes particularly positively influence nitrification. Epiphytic nitrifiers were estimated to be as important for the total nitrification as nitrifiers in the sediment. Denitrification was mainly taking place in the sediment. The influence of the suspended nitrifiers and denitrifiers on the nitrogen balance was assumed to be negligible.  相似文献   
8.
Discharge of groundwater from a limestone aquifer through floodplain sediments is associated with a large decrease in the nitrate concentration of the water. Results are presented to show that only a small amount of this reduction is caused by dilution of groundwater by water already present within the floodplain sediments; most of the effect is an active reduction process, most probably biological denitrification. The nitrate reduction process appears to operate independently of surface vegetation type and tends to be focused in specific regions of the floodplain where sediments are anaerobic and carbon-rich. The results suggest that active denitrification can operate throughout the winter, when nitrate concentrations in groundwater are at their highest and that the process remains effective even during periods of maximum run-off. The results show that undrained floodplains can be used as buffer zones to protect surface waters from groundwater polluted with agriculturally derived nitrate.  相似文献   
9.
The reactive transport modeling of a complicated suite of reactions apparent in the aquifer during the application of N-containing fertilizers is reported. The unconfined sandy aquifer can be subdivided into an oxic zone which contains groundwater with oxygen and nitrate and an anoxic zone characterized by elevated iron and sulfate concentrations in groundwater. Oxygen and nitrate are being reduced by pyrite and organic matter that commonly apparent in the aquifer. The oxidation of pyrite is modeled using the local equilibrium approach, whereas decomposition of organic matter, with the adoption of kinetic approach. The system is buffered by dissolution of aluminum and iron oxides. The modeling process is a two-step procedure. First, the processes are modeled in the one-dimensional (1D) column using PHREEQC code. Subsequently, the calibrated and verified data were copied and used in two-dimensional (2D) PHAST model. Prior to the performance of reactive transport modeling operations with PHAST, a reliable flow model was executed. Finally, predictions are made for the distribution of water chemistry for the year 2008. Model predicts that sulfate derived from the ongoing pyrite oxidation is reduced by the dissolved organic carbon at the higher depth and forms pyrite by the reaction with iron. The results of this study highlight the importance of understanding the interplay between the transport and chemical reactions that occur during the input of nitrate to the aquifer. Reactive transport modeling incorporating the use of a newly developed code PHAST have proved to be a powerful tool for analyzing and quantifying such interactions.  相似文献   
10.
Denitrification influences the nitrogen budget in estuaries by removing fixed nitrogen from the inorganic pool; rates are dependent on both geological and geographic conditions as well as increasing anthropogenic impacts. In this study the effects of copper (Cu), chromium (Cr), zinc (Zn), cadmium (Cd) and lead (Pb), on the denitrification pathway were evaluated in subtidal and intertidal sediments of the Douro River estuary. Dinitrogen, N2O and NO2 production rates were measured in triplicate slurries of field samples under different treatments of metal concentrations. Results demonstrated that similar metal amendments led to different site responses for denitrification, suggesting that variations in sediment properties (metal concentrations, grain size, organic matter content, etc.) and/or differences in denitrifying community tolerance modulate the level of metal toxicity. Denitrifying communities in subtidal muddy sediments were not affected by increasing concentrations of metals. In contrast, intertidal sandy sites revealed high sensitivity to almost all trace metals tested; almost complete inhibition by Cr (95%) and Cu (85%) was observed for 98 and 79 μg per gram of wet sediment respectively, and by Zn (92%) at the highest concentration added (490 μg per gram of wet sediment). Moreover, the addition of trace metals stimulated N2O and NO2 accumulation in intertidal sandy (Zn, Cu, Cr and Cd) and muddy sediments (Cu and Zn), demonstrating a pronounced inhibitory effect on specific steps within the denitrification enzymatic system. In summary, the results obtained suggest that, according to the type of estuarine sediment, trace metals cannot only reduce total N removal from an estuary via denitrification but also can enhance the release of N2O, a powerful greenhouse gas.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号