首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   2篇
  国内免费   5篇
地质学   8篇
海洋学   1篇
  2024年   1篇
  2021年   1篇
  2020年   1篇
  2019年   3篇
  2016年   2篇
  2015年   1篇
排序方式: 共有9条查询结果,搜索用时 312 毫秒
1
1.
The microstructure of black siliceous shale from the lower Cambrian Niutitang Formation, Sichuan Basin in China was investigated by the combination of field emission scanning electron microscope (FE-SEM) and argon ion beam milling. The nanometer-to micrometer-scale pore systems of shales are an important control on gas storage and fluid migration. In this paper, the organic porosity in shale samples within oil and gas window has been investigated, and the formation mechanism and diagenetic evolution of nanopores have been researched.FE-SEM reveals five pore types that are classified as follows: organic nanopores, pores in clay minerals, nanopores of framework minerals, intragranular pores in microfossils, and microfractures. Numerous organic nanopores are observed in shales in the gas window, whereas microfractures can be seen within the organic matter of shales in the oil window. Microfractures in oil window shales could be attributed to pressure buildup in the organic matter when incompressible liquid hydrocarbon are generated, and the orientation of microfractures is probably parallel to the bedding and strength anisotropy of the formation. Pores in clay minerals are always associated with the framework of clay flakes, and develop around rigid mineral grains because the pressure shadows of mineral grains protect pores from collapse, and the increasing of silt content would lead to an increase in pressure shadows and improve porosity. Nanopores of rock framework are probably related to dissolution by acidic fluids from hydrocarbon generation, and the dissolution-related pores promote permeability of shales. Porosity in the low-TOC, low-thermal-maturity shales contrast greatly with those of high-TOC, high-thermal-maturity shales. While the high-TOC shales contain abundant organic microporosity, the inorganic pores can contribute a lot to the porosity of the low-TOC shales.  相似文献   
2.
有机质孔隙是页岩储集空间的重要组成部分,具有强烈的非均质性,阻碍对页岩储层质量的正确认识和评价,其本质是受有机显微组分类型及其在生烃过程中孔隙演化的影响。本文采用场发射扫描电镜和荧光显微镜定位观察手段实现特定显微组分孔隙发育特征的表征,结合Image J图像处理技术,对不同演化阶段的显微组分进行定量化统计,总结不同有机显微组分的孔隙演化规律。研究结果表明:固体沥青孔隙度随着成熟度的升高呈现先增加后减小的趋势,在固体沥青反射率SBR_O介于1.6%~2.0%时,固体沥青孔隙最为发育,而以SBR_O=2.0%为界,固体沥青孔隙度开始减小。镜质体和惰质体的孔隙发育规律相似,随着成熟度增加,总体表现出先减小而后微弱增加的趋势。在生油窗阶段,镜质体和惰质体孔隙度最小,无机矿物和固体沥青的充填使胞腔孔隙损失达90%以上,而进入高成熟阶段,固体沥青孔隙的发育使原始胞腔孔隙得到一定程度的恢复,成为镜质体和惰质体残余孔隙的主要贡献者,贡献率达56.73%和100%,可见固体沥青孔隙对页岩储层储集空间的重要性。综合沉积成岩作用和生烃作用,页岩储层在未成熟阶段和高成熟阶段晚期孔隙最为发育,前者有机质以原始胞腔孔隙为主,后者以固体量孔隙为主。明确有机显微组分孔隙演化规律为页岩有利储层预测和页岩气生产开发储层改造提供参考。  相似文献   
3.
This work investigated the element distribution of perthite from the Upper Triassic Yanchang Formation tight sandstone in the Ordos Basin of northern China by field emission scanning electron microscopy(FE-SEM) and energy dispersive spectrometer(EDS). FE-SEM results indicate significant differences in the morphology of Na-rich feldspar when K-rich feldspar is the main component of the perthite. EDS results show that different types of perthite have clearly defined differences on different element indexes. Additionally, indexes such as average-weight-K(K-rich)/Na(Na-rich), maximumweight-K(Na-rich)/Na(Na-rich) and average-atomic-K(K-rich)/Na(Na-rich) might be the most effective ones to identify perthite types. Perthite is divided into six main types, i.e., perthite with thick parallel stripe distribution, with thin parallel stripe distribution, with lumpy stripe distribution, with dendritic stripe distribution, with encircling stripe distribution, and with mixed stripe distribution.  相似文献   
4.
通过氩离子抛光-场发射扫描电镜、小角X射线散射及低温氮气吸附实验,对宁镇地区下志留统仑山5井等高家边组底部富有机质泥页岩孔隙结构进行分析,为下扬子区下志留统富有机质泥页岩的储层评价提供依据。研究表明:高家边组富有机质泥页岩含有大量的纳米级孔隙,包括有机质孔、矿物粒间孔、矿物粒内孔、微裂缝等,孔径分布复杂;优势孔径分布为介孔段,孔隙直径主要为2~50 nm。影响孔径分布的主要因素是矿物组成,脆性矿物和黏土矿物对微孔和介孔都有一定的影响,而有机质含量对泥页岩总体孔隙特征的影响并不明显。  相似文献   
5.
The organic-rich shale of the Shanxi and Taiyuan Formation of the Lower Permian deposited in a marine-continental transitional environment are well developed in the Ordos Basin, NW China, which is considered to contain a large amount of shale hydrocarbon resources. This study takes the Lower Permian Shanxi and Taiyuan shale collected from well SL# in the Ordos Basin, NW China as an example to characterize the transitional shale reservoir. Based on organic geochemistry data, X-ray diffraction (XRD) analysis, field-emission scanning electron microscopy (FE-SEM) observations, the desorbed gas contents of this transitional shale were systematically studied and the shale gas potential was investigated. The results indicate that the Lower Permian Shanxi and Taiyuan shale has a relatively high total organic carbon (TOC) (average TOC of 4.9%) and contains type III kerogen with a high mature to over mature status. XRD analyses show that an important characteristic of the shale is that clay and brittle minerals of detrital origin comprise the major mineral composition of the marine-continental transitional shale samples, while the percentages of carbonate minerals, pyrite and siderite are relatively small. FE-SEM observations reveal that the mineral matrix pores are the most abundant in the Lower Permian shale samples, while organic matter (OM) pores are rarely developed. Experimental analysis suggests that the mineral compositions mainly govern the macropore development in the marine-continental transitional shale, and mineral matrix pores and microfractures are considered to provide space for gas storage and migration. In addition, the desorption experiments demonstrated that the marine-continental transitional shale in the Ordos Basin has a significantly potential for shale gas exploration, ranging from 0.53 to 2.86 m3/t with an average value of 1.25m3/t, which is in close proximity to those of terrestrial shale (1.29 m3/t) and marine shale (1.28 m3/t). In summary, these results demonstrated that the Lower Permian marine-continental transitional shale in the Ordos Basin has a significantly potential for shale gas exploration.  相似文献   
6.
滑石的颗粒粒径、形貌、晶型等对其应用的实效性、终端产品的性能产生极大影响,目前主要研究其表面改性,而有关微观形貌及晶体结构研究较少。本文利用X射线荧光光谱、X射线衍射分析、红外光谱、粒度分析仪结合高分辨场发射扫描电镜(FE-SEM)技术对辽宁滑石粉在高强度机械力研磨作用下的微形貌和晶体结构变化特征进行系统研究。结果表明滑石粉原矿混合物中MgO与SiO2的分子个数比约为0.45,该数值明显低于纯滑石粉晶体中MgO与SiO2的分子个数比0.75。此类滑石为典型的单斜晶系,研磨作用使滑石粉由晶态转变为非晶态结构,其层状结构的有序化和键合作用发生了明显的变化。滑石粒度随研磨时间变化呈现减小-增大-减小的循环过程。研磨后粉体形貌存在差异,细化的小颗粒粉体因团聚而呈"准球体",且随着研磨的进行出现细化-团聚-细化的反复过程。此结论对于滑石的深加工与应用及其相关矿物粉体的研究具有一定的参考价值。  相似文献   
7.
8.
Nanoscale pore characteristics of the Upper Permian Longtan transitional mudrocks and their equivalent strata Wujiaping Formation marine mudrocks in and around the eastern Sichuan Basin was investigated using field emission scanning electron microscopy (FE-SEM) and low-pressure N2 adsorption experiments. The results indicate that the Upper Permian mudrock is at a mature stage with total organic carbon (TOC) values ranging between 0.47% and 12.3%. The Longtan mudrocks mainly contain vitrinite, and their mineral composition is primarily clay. In contrast, the Wujiaping mudrocks are dominated by sapropelinite and solid bitumen, and their mineral compositions are mainly quartz and a notably high amount of pyrite. The FE-SEM reveals that clay mineral pores and microcracks are the common pore types in the Longtan mudrocks. The specific surface area and pore volume depend on the clay content but are negatively correlated with the TOC. The generation of nanometer pores in the Longtan mudrocks is caused by high clay mineral contents. Meanwhile, the Wujiaping mudrock mainly contains OM pores, and the pore parameters are positively correlated with the TOC. The OM pore development exhibits remarkable differences in the Longtan and Wujiaping mudrocks, which might be related to their sedimentary facies and maceral fractions. Vitrinite and inertinite appear as discrete particles in these mudrocks and cannot generate pores during thermal maturation. Sapropelinite often contains many secondary pores, and solid bitumen with large particles, usually with several pores, is not the major contributor to the pore system of the investigated mudrock.  相似文献   
9.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号