首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   1篇
  国内免费   7篇
地质学   13篇
海洋学   13篇
  2021年   1篇
  2017年   1篇
  2016年   2篇
  2014年   1篇
  2013年   2篇
  2011年   1篇
  2008年   3篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  2001年   3篇
  2000年   2篇
  1996年   1篇
  1994年   1篇
  1993年   1篇
  1989年   1篇
排序方式: 共有26条查询结果,搜索用时 15 毫秒
1.
Ferromanganese crusts were found in carbonates of tectonostratigraphic units located in the northern and southern areas of the eastern External Subbetic of the Betic Cordilleras (SE Spain). The crusts are associated with four stratigraphic discontinuities of the Jurassic pelagic swells sequences: D1 (Late Carixian-Early Domerian), D2 (Middle Toarcian-Early Bajocian), D3 (Middle Bathonian-Middle Oxfordian), D4 (Early Tithonian-Late Albian). Two main textural types of crusts are distinguished. Type I crusts are thin and characterized by the presence of goethite, quartz, albite and phyllosilicates. Moreover, they show Si, Al, Mg, Na, Ti and K contents close to the European Shale Composite contents and Fe/Mn ratios (>350) higher than type II crusts. Type II crusts occur as thicker banded laminae and/or macrooncoids. They consist mainly of goethite and Mn-oxyhydroxides, which are enriched in REE, Co, Ni and Cu and show a strong Ce positive anomaly. After stratigraphical, mineralogical and geochemical data, the crust formation would be produced by the exposition of bottom sediments during long periods to a thin layer of oxidizing sea and porewater enriched in metallic elements. The textural and compositional variations between crusts can be explained by taking into account the bathymetric conditions. In shallower swells, the precipitation of a thick layer of banded type II crusts and in deeper areas, thin type I crusts were formed. Organic influence was only important in crusts from D3 of the northern area where textural evidence indicates the existence of seasonal periodically alternation between organism accretion and fine sedimentation. These were preceded and followed by phases in which the inorganic precipitation of oxides prevailed together with the fine sedimentation.  相似文献   
2.
An acoustic inversion method using a wide-band signal and two near field receivers is proposed and applied to multiple layered seabed models including a manganese sediment. The inversion problem can be formulated into a probabilistic model comprised of signals, a forward model, and additive noise. The forward model simulates wide-band signals, such as chirp signals, and is chosen to be the source-waveletconvolution plane wave modeling method. The wavelet matching technique, using weighted least-squares fitting, estimates the sediment sound-speed and thickness on which determination of the possible numerical ranges for a priori uniform distribution is based. The genetic algorithm is applied to a global optimization problem to find a maximum a posteriori solution for determined a priori search space. Here the object function is defined by an L 2 norm of the difference between measured and modeled signals. Not only the marginal pdf but also its statistics are calculated by numerical evaluation of integrals using the samples selected during importance sampling process of the genetic algorithm.  相似文献   
3.
Marine minerals such as manganese nodules, Co-rich ferromanganese crusts, and seafloor massive sulfides are commonly seen as possible future resources that could potentially add to the global raw materials supply. At present, a proper assessment of these resources is not possible due to a severe lack of information regarding their size, distribution, and composition. It is clear, however, that manganese nodules and Co-rich ferromanganese crusts are a vast resource and mining them could have a profound impact on global metal markets, whereas the global resource potential of seafloor massive sulfides appears to be small. These deep-sea mineral commodities are formed by very different geological processes resulting in deposits with distinctly different characteristics. The geological boundary conditions also determine the size of any future mining operations and the area that will be affected by mining. Similarly, the sizes of the most favorable areas that need to be explored for a global resource assessment are also dependent on the geological environment. Size reaches 38 million km2 for manganese nodules, while those for Co-rich crusts (1.7 million km2) and massive sulfides (3.2 million km2) are much smaller. Moreover, different commodities are more abundant in some jurisdictions than in others. While only 19% of the favorable area for manganese nodules lies within the Exclusive Economic Zone of coastal states or is covered by proposals for the extension of the continental shelf, 42% of the favorable areas for massive sulfides and 54% for Co-rich crusts are located in EEZs.  相似文献   
4.
海洋可以被分成若干特征各异的、运动着的海水团,各种海洋现象就源于海水团的运动和相互作用。分隔不同海水团的前锋面上的混合作用是促使成矿组分发生沉淀富集的地球化学障。在海水团前锋混合带上,成矿组分在沉积物中产生同生富集,结果生成沉积矿床或矿源层。这是一种在时间上广泛发生但又尚未被人们所认识的崭新机制。  相似文献   
5.
本文分析了中西太平洋海山富钴结壳及其各主要层圈(外层、疏松层、亮煤层)和玄武岩基岩的铂族元素(PGE)和Au 含量以及 Os 同位素组成,发现富钴结壳中 PGE 和 Au 含量均较高,且变化很大,∑PGE 为(70.09~629.26)×10~(-9),平均289.48×10~(-9),Au 为(0.60~26900)×10~(-9).具三层结构的富钴结壳中,疏松层(∑PGE=(339.37~545.82)×10~(-9))和亮煤层(∑PGE=(280.09~629.26)×10~(-9))的∑PGE 明显高于外层((70.09~133.27)×10~(-9).单层结壳的∑PGE 为(83.94~479.75)×10~(-9),Au 含量普遍高于具三层结构者.结壳的∑PGE 和 Au 含量远高于太平洋多金属结核(分别为(101.57~155.83)×10~(-9)和(1~4)×10~(-9)。沉积深度和海水氧逸度的不同是导致结壳和结核中 PGE 含量明显差异的主导因素。富钴结壳∑PGE 和 Pt 与 Mn(%)之间呈明显的正相关关系,而与 Fe(%)具负相关性,与多金属结核正好相反,显示结壳中的 PGE主要赋存在水羟锰矿(δ-MnO_2)等锰矿物相中,与针铁矿(FeOOH·nH_2O)等铁矿物相关系不大,而结核中的 PGE 主要赋存在铁矿物相中。PGE 球粒陨石标准化曲线和各项参数显示富钴结壳的 PGE 和 Au 主要来自海底玄武岩的蚀变释放,部分来自铁陨石微粒等地外物质,而与海底热水活动无关。计算显示西太平洋结壳距今42.5Ma 左右开始生长,生长过程中分别在8.0Ma 和21.8Ma 处出现间断,相应形成外层、疏松层和亮煤层,其各自沉积速率为2.64mm/Ma,1.45mm/Ma 和1.06mm/Ma,相应海水的~(187)Os/~(188)Os 分别为0.948~0.953,0.599~0.673和0.425~0.536,显示外层含有较多的大陆风化尘,而疏松层和亮煤层的沉积物主要来自海底洋壳蚀变和陨石碎屑或宇宙尘等地外物质。  相似文献   
6.
The first attempt to exploit deep-sea manganese nodules ended in failure as a result of the collapse of world metal prices, the onerous provisions imposed by the U.N. Convention on the Law of the Sea (UNCLOS), and the overoptimistic assumptions about the viability of nodule mining. Attention then focused on Co-rich manganese crusts from seamounts. Since the mid-1980s, a number of new players have committed themselves to long-term programs to establish the viability of mining deep-sea manganese nodules. These programs require heavy subsidy by the host governments. Au-rich submarine hydrothermal deposits located at convergent plate margins are now emerging as a more promising prospect for mining than deep-sea manganese deposits.  相似文献   
7.
A sampling expedition has shown that largely hydrogenetic marine ferromanganese deposits occur in the Christmas Island region south of Java (~10°S), as small nodules on seamount slopes and abyssal plains (red clay), and as thick crusts on volcanic ridges and seamounts. Vernadite is dominant, with birnessite, jacobsite and todorokite common. Nodules were recovered in 25% of free-fall grab stations in water 4600-5900 m deep, and are not abundant where present. The nodules average 9.6% Fe, 19.7% Mn, 0.51% Ni, 0.49% Cu, and 0.12% Co. Crusts are common in water 1450-3700 m deep, with average deposition rates of 1-1.5 mm / m.y. The crusts average 13.9% Fe, 16.2% Mn, 0.35% Ni, 0.11% Cu, and 0.44% Co. Cobalt grades are higher (~0.8%) in shallower water ( < 2500 m), so future exploration should concentrate on depths of 500-1500 m near the oxygen minimum zone.  相似文献   
8.
The morphological features associated with Co-rich manganese deposits, the size variations of nodules, and the occurrence of different substrates have been analyzed, to evaluate the influence of various seabed slope angles on the distribution of these features. The coverage and size of the crusts depend on their surface morphology and seabed topography, resulting in cobble-type, lineated, or step-like outcrops. Small nodules (1 - 4 cm in diameter) dominate all seabed slopes, with a few locations having nodules ranging from 1 to 8 or 1 to 10 cm. Sediments invariably occur as substrates for nodules and as cover for crusts, their coverage being inversely proportional to that of the nodules and crust outcrops. Steeper seafloor areas have large crust outcrops exposed with no or few nodules and sediments associated with them. The intermediate slopes have a combination of nodules, sediments, and crusts in various proportions, depending on topography and gradient. Large-scale nodule occurrences, followed by sediment fields and crust outcrops on seabed slopes of greater than 3 degrees, 3 - 7 degreees, and less than 15 degrees, respectively, represent typical morphological distribution zones of the Co-rich manganese deposits on a seamount in the central Pacific Ocean. A transition zone between nodule-dominated fields and large crust outcrops occurs for slopes from 7 degrees to 15 degrees. This detailed study on distribution of Co-rich deposits gives a better understanding for purposes of their exploitation.  相似文献   
9.
Seafloor morphology and ferromanganese nodule occurrence were studied using a multibeam side scan sonar (SeaBeam, 2000) and a deep-sea camera system in the Korea Deep-sea Environmental Study (KODES) area, northeast equatorial Pacific. Seafloor morphology and nodule abundance are highly variable even in this small study area. The NNE-SSW oriented hills are parallel and about 100-200 m high. Valleys are very flat-floored, while hilltops are rugged with depressions of tens of meters. Cliffs to about 100 m bound the valleys and the hills. The study area can be classified into three types based both on nodule occurrence and seafloor morphology, mostly G- and B-types and some M-type. G-type is characterized by high nodule abundance, ubiquitous bioturbation, and flat seafloor morphology, while B-type is characterized by irregular-shaped nodules, variable nodule abundance, occurrence of giant nodules and sediment lumps, rugged bottom morphology with depressions, and white calcareous surface sediments. Medium nodule abundance and a generally flat seafloor characterize M-type. G-type occurs mostly in the valley regions, while B-type is on the hilltop areas. M-type is located between the hilltop and the valley. Tectonic movement of the Pacific plate resulted in the elongated abyssal hills and cliffs. The rugged morphology on hilltops resulted from erosion and redistribution of surface siliceous sediments on hilltops by bottom currents, outcropping of underlying calcareous sediments, and dissolution of the carbonate sediments by corrosive bottom water undersaturated with CaCO 3 . Sediment eroded from the hills, which is relatively young and organic-rich, is deposited in the valleys, and diagenetic metal supply to manganese nodules in the valley area is more active than on the hills. We suggest that tectonic movement ultimately constrains morphology, surface sediment facies, bottom currents and sediment redistribution, bioturbation, thickness of the sedimentary layer, and other conditions, which are all interrelated and control nodule occurrence. The best potential area for mining in the study area is the G-type valley zones with about 3-4 km width and NNW-SSE orientation.  相似文献   
10.
Vast reserves of marine minerals are known to occur within the Mexican Exclusive Economic Zone. These reserves include: (1) heavy mineral placers rich in titanium and iron along the coast of San Antonio del Mar, Baja California and the southern States of Oaxaca and Guerrero; (2) phosphorites, which represent the only source for superphosphate fertilizers along the Pacific coast off the Baja California peninsula and the Gulf of Tehuantepec; and (3) manganese oxide deposits in nodule and crusts located adjacent to the Clarion-Clipperton Zone and containing high concentrations of Cu + Ni + Co (up to 1.9%), which are essential for the steel and super-alloy industries. Few but important efforts toward surveying these deposits have been carried out by Mexican and international researchers. Relevant data generated by these investigations are reviewed here and put together in a single document. Adequate knowledge of Mexican mineral resources is essential for the development of management strategies when offshore mining starts during this century. Thus, the review discusses the economics inherent to ocean mining in Mexico, setting baselines for future exploration and development activities in the Mexican Exclusive Economic Zone.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号