首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   309篇
  免费   12篇
  国内免费   2篇
地球物理   201篇
地质学   97篇
海洋学   23篇
天文学   1篇
自然地理   1篇
  2021年   1篇
  2020年   4篇
  2019年   4篇
  2018年   1篇
  2017年   5篇
  2016年   12篇
  2015年   19篇
  2014年   15篇
  2013年   12篇
  2012年   2篇
  2011年   11篇
  2010年   13篇
  2009年   23篇
  2008年   20篇
  2007年   20篇
  2006年   28篇
  2005年   28篇
  2004年   23篇
  2003年   19篇
  2002年   22篇
  2001年   5篇
  2000年   10篇
  1999年   6篇
  1998年   4篇
  1997年   1篇
  1996年   5篇
  1995年   3篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1978年   1篇
排序方式: 共有323条查询结果,搜索用时 31 毫秒
1.
This study pertains to prediction of liquefaction susceptibility of unconsolidated sediments using artificial neural network (ANN) as a prediction model. The backpropagation neural network was trained, tested, and validated with 23 datasets comprising parameters such as cyclic resistance ratio (CRR), cyclic stress ratio (CSR), liquefaction severity index (LSI), and liquefaction sensitivity index (LSeI). The network was also trained to predict the CRR values from LSI, LSeI, and CSR values. The predicted results were comparable with the field data on CRR and liquefaction severity. Thus, this study indicates the potentiality of the ANN technique in mapping the liquefaction susceptibility of the area.  相似文献   
2.
The lack of earthquake-induced liquefaction features in Late Wisconsin and Holocene sediments in Genesee, Wyoming, and Allegany Counties suggests that the Clarendon–Linden fault system (CLF) did not generate large, moment magnitude, M≥6 earthquakes during the past 12,000 years. Given that it was the likely source of the 1929 M 4.9 Attica earthquake, however, the Clarenden–Linden fault system probably is capable of producing future M5 events. During this study, we reviewed newspaper accounts of the 1929 Attica earthquake, searched for earthquake-induced liquefaction features in sand and gravel pits and along tens of kilometers of river cutbanks, evaluated numerous soft-sediment deformation structures, compiled geotechnical data and performed liquefaction potential analysis of saturated sandy sediments. We found that the 1929 M 4.9 Attica earthquake probably did not induce liquefaction in its epicentral area and may have been generated by the western branch of the Clarendon–Linden fault system. Most soft-sediment deformation structures found during reconnaissance did not resemble earthquake-induced liquefaction features, and even the few that did could be attributed to non-seismic processes. Our analysis suggests that the magnitude threshold for liquefaction is between M 5.2 and 6, that a large (M≥6) earthquake would liquefy sediments at many sites in the area, and that a moderate earthquake (M 5–5.9) would liquefy sediments at some sites but perhaps not at enough sites to have been found during reconnaissance. We conclude that the Clarendon–Linden fault system could have produced small and moderate earthquakes, but probably not large events, during the Late Wisconsin and Holocene.  相似文献   
3.
Field observations on ground motions from recent earthquakes imply that current knowledge is limited with regard to relating vertical and horizontal motions at liquefiable sites. This paper describes a study with the purpose of clarifying this emerging issue to some extent. A series of numerical analyses is carried out on a liquefiable soil deposit with a verified, fully coupled, nonlinear procedure. It is shown that the transformation of vertical motions in the deposit differs considerably from the transformation of horizontal motions. Both the amplitude and frequency content of the horizontal motions are strongly dependent on the shaking level or the associated nonlinear soil behavior. The transfer function for vertical motions is however likely to be independent of the intensity of input motions; no reduction in the amplitude occurs even in the case of strong shaking. The results are shown to be in consistence with the laboratory observations on shaking table tests and recent field observations that less nonlinearity exists for vertical motions. It is also shown that the possibility exists for using information on spectral ratios between the horizontal and vertical surface motions to quickly identify in situ soil behavior and liquefaction that are not readily covered by conventional field or laboratory experimentation procedures.  相似文献   
4.
Under seismic excitation, liquefied clean medium to dense cohesionless soils may regain a high level of shear resistance at large shear strain excursions. This pattern of response, known as a form of cyclic mobility, has been documented by a large body of laboratory sample tests and centrifuge experiments. A plasticity-based constitutive model is developed with emphasis on simulating the cyclic mobility response mechanism and associated pattern of shear strain accumulation. This constitutive model is incorporated into a two-phase (solid–fluid), fully coupled finite element code. Calibration of the constitutive model is described, based on a unique set of laboratory triaxial tests (monotonic and cyclic) and dynamic centrifuge experiments. In this experimental series, Nevada sand at a relative density of about 40% is employed. The calibration effort focused on reproducing the salient characteristics of dynamic site response as dictated by the cyclic mobility mechanism. Finally, using the calibrated model, a numerical simulation is conducted to highlight the effect of excitation frequency content on post-liquefaction ground deformations.  相似文献   
5.
Fuzzy neural network models for liquefaction prediction   总被引:1,自引:0,他引:1  
Integrated fuzzy neural network models are developed for the assessment of liquefaction potential of a site. The models are trained with large databases of liquefaction case histories. A two-stage training algorithm is used to develop a fuzzy neural network model. In the preliminary training stage, the training case histories are used to determine initial network parameters. In the final training stage, the training case histories are processed one by one to develop membership functions for the network parameters. During the testing phase, input variables are described in linguistic terms such as ‘high’ and ‘low’. The prediction is made in terms of a liquefaction index representing the degree of liquefaction described in fuzzy terms such as ‘highly likely’, ‘likely’, or ‘unlikely’. The results from the model are compared with actual field observations and misclassified cases are identified. The models are found to have good predictive ability and are expected to be very useful for a preliminary evaluation of liquefaction potential of a site for which the input parameters are not well defined.  相似文献   
6.
A series of effective stress analyses is carried out on the seismic performance of river dikes based on the case histories during the 1993 Hokkaido-Nansei-oki and 1995 Hyogoken-Nambu earthquakes in Japan. Seven case histories selected for the analyses involve a crest settlement ranging from none to 2.7 m in the dikes 3–6 m high with evidence of liquefaction at foundation soil. The effective stress model used is based on a multiple shear mechanism and was developed by one of the authors. The soil parameters are evaluated based on the site investigation and laboratory test results. The results of the analyses are basically consistent with the observed performance of the river dikes. In particular, the effective stress model shows a reasonable capability to reproduce the varying degree of settlements depending on the geotechnical conditions of foundation soils beneath the dikes. The analyses also indicate that the effect of a cohesive soil layer mixed with the liquefiable sand layers beneath the dikes can be a primary factor for reducing the liquefaction-induced deformation of dikes.  相似文献   
7.
合理评价液化地基及采用科学的处理方案对工程建设有重要意义,总结了影响地基液化的主要因素及液化判定的一般方法,提出了一种新的液化判定方法——归一法。结合实例就液化地基的设计与处理谈了一些体会。  相似文献   
8.
Contrary to many laboratory investigations, common empirical correlations from in situ tests consider that the increase in the percentage of fines leads to an increase of the cyclic liquefaction resistance of sands. This paper draws upon the integrated Critical State Soil Mechanics framework in order to study this seemingly not univocal effect. Firstly the effect of fines on the Critical State Line (CSL) is studied through a statistical analysis of a large data set of published monotonic triaxial tests. The results show that increasing the content of non-plastic fines practically leads to a clockwise rotation of the CSL in (e–ln p) space. The implication of this effect on cyclic liquefaction resistance is subsequently evaluated with the aid of a properly calibrated critical state elasto-plastic constitutive model, as well as a large number of published experimental results and in situ empirical correlations. Both sets of data show clearly that a fines content, less than about 30% by weight, may prove beneficial at relatively small effective stresses (p0<50–70 kPa), such as the in situ stresses prevailing in most liquefaction case studies, and detrimental at larger confining stresses, i.e. the stresses usually considered in laboratory tests. To the extent of these findings, a correction factor is proposed for the practical evaluation of liquefaction resistance in terms of the fines content and the mean effective confining stress.  相似文献   
9.
Evaluation of liquefaction potential using neural-networks and CPT results   总被引:1,自引:0,他引:1  
In this research, a reliable Cone Penetration Test data set was gathered with a wide range of parameters. This data was incorporated in a Neural-Networks computer software called STATISTICA Neural-Networks. The back propagation algorithm with a multilayer perceptron network is utilized to analyze the liquefaction occurrence in different sites. In this study, different sets of effective parameters for the neural-network analyses are selected such that to reduce the noise and to obtain more accurate results.Considering the relative importance of effective parameters in liquefaction assessment, it is indicated that σ0, σ′0 together play a more important role than what previously was assumed and hence the relative importance of the qc and seismic parameters are decreased compared with the previous works. The results presented here have more accuracy than previous works while at the same time, the range of the parameters used in this study is much wider than what was previously used. This range of parameters makes the proposed method applicable for practical purposes.  相似文献   
10.
A review and analysis of chemical and nuclear explosive-induced porewater pressure increases and induced rise in groundwater table elevations (groundwater mounding) is presented. Our analysis indicates that residual pore pressure increases and groundwater mounding can be induced by underground chemical and nuclear explosions to scaled distances of 879 m/(kt)1/3. This relationship is linear over seven orders of magnitude of explosive energy ranging from a 0.01 kg chemical explosion to a 100 kt nuclear explosion and is valid for a wide variety of saturated geological profiles. Underground chemical explosions, and probably underground nuclear explosions have the potential to induce liquefaction of water-saturated soils to scaled distances of about 260 m/(kt)1/3.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号