首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
地质学   2篇
海洋学   1篇
  2016年   1篇
  2004年   1篇
  2003年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
The common observation of sedimentary basin inversion in orogenic forelands implies that rifts constitute weak areas of the continental lithosphere. When compressed, the rifts respond with uplift of the deepest parts and erosion of sediments therein. Simultaneously, syn-compressional marginal troughs are formed flanking the inversion zone.Since rifting and subsequent post-rift thermal re-equilibration are processes expected to alter the long-term mechanical state of the lithosphere, the phenomenon of basin inversion is non-trivial from a rheological point of view. Stochastic modelling of the long-term thermal structure beneath sedimentary basins indicates that the crustal part of a rift is warmer, and hence weaker, than the surrounding crustal blocks. In contrast, the mantle part is cold and strong beneath the basin centre.In this paper, it is investigated whether the rifting-induced strength alterations constitute a sufficient condition for a thermally equilibrated rift to invert by compression. Numerical experiments with two-dimensional dynamic thermo-mechanical models are performed. In particular, the focus is on rifting-related mechanical instabilities that reduce the load bearing capacity of the lithosphere. In the experiments, strain-softening behaviour is introduced in the non-associated plasticity model representing brittle yielding. The result is self-consistent large-scale fault formation.The models predict that the rifting-related necking instability induces differential crustal thinning increasing the post-rift crustal weakness. Strain softening and the associated fault formation amplifies the necking instability and introduces zones of structural weakness exposed for compressional re-activation.Under these circumstances, basin inversion follows as a natural consequence of rift compression.  相似文献   
2.
Numerous basin modelling studies have been performed on the Viking Graben in the northern North Sea during the past decades in order to understand the driving mechanisms for basin evolution and palaeo temperature estimations. In such modelling, it is important to include lithospheric flexure. The values derived for the lithospheric strength by these studies vary considerably (i.e. up to a factor of 30). In this study, which is based on new interpretation of a regional transect, we show that both the estimated value of the effective elastic thickness and the derived β-profile are dependent on the assumed value of the depth of necking. The use of models that implicitly set the level of necking at a depth of 0 km generally leads to an underestimation of the lithospheric strength, and an overestimation of the thinning factors. In the northern Viking Graben, a necking depth at intermediate crustal levels gives results comparable to the observations. Extension by faulting is modelled to be a significant factor. In conclusion, rifting in the northern Viking Graben can be explained with various models of effective elastic thicknesses (EET) varying from 1 km for a zero necking depth to the depth of the 450 °C isotherm for an intermediate level of necking.It is also shown that the development of the basin during the post-rift phase cannot be explained by pure shear/simple shear extension. Two mechanisms are proposed here to explain the post-rift subsidence pattern, namely intra-plate stress and phase boundary migration. The two extreme models for EET mentioned above (1 km for a zero necking depth to the depth of the 450 °C isotherm for an intermediate level of necking) give very different responses to compressional stress, the latter gives basically no response for realistic intra-plate stress.  相似文献   
3.
The identification of the structures and deformation patterns in magma-poor continental rifted margins is essential to characterize the processes of continental lithosphere necking. Brittle faults, often termed mantle detachments, are believed to play an essential role in the rifting processes that lead to mantle exhumation. However, ductile shear zones in the deep crust and mantle are rarely identified and their mechanical role remains to be established. The western Betics (Southern Spain) provide an exceptional exposure of a strongly thinned continental lithosphere, formed in a supra-subduction setting during Oligocene-Lower Miocene. A full section of the entire crust and the upper part of the mantle is investigated. Variations in crustal thickness are used to quantify crustal stretching that may reach values larger than 2000% where the ductile crust almost disappears, defining a stage of hyper-stretching. Opposite senses of shear top-to-W and top-to-E are observed in two extensional shear zones located close to the crust-mantle boundary and along the brittle-ductile transition in the crust, respectively. Where the ductile crust almost disappears, concordant top-to-E-NE senses of shear are observed in both upper crust and serpentinized mantle. Late high-angle normal faults with ages of ca. 21 Ma or older (40Ar/39Ar on white mica) crosscut the previously hyper-stretched domain, involving both crust and mantle in tilted blocks. The western Betics exemplify, probably better than any previous field example, the changes in deformation processes that accommodate the progressive necking of a continental lithosphere. Three successive steps can be identified: i/a mid-crustal shear zone and a crust-mantle shear zone, acting synchronously but with opposite senses of shear, accommodate ductile crust thinning and ascent of subcontinental mantle; ii/hyper-stretching localizes in the neck, leading to an almost disappearance of the ductile crust and bringing the upper crust in contact with the subcontinental mantle, each of them with their already acquired opposite senses of shear; and iii/high-angle normal faulting, cutting through the Moho, with related block tilting, ends the full exhumation of the mantle in the zone of localized stretching. The presence of a high strength sub-Moho mantle is responsible for the change in sense of shear with depth. Whereas mantle exhumation in the western Betics occurred in a backarc setting, this deformation pattern controlled by a high-strength layer at the top of the lithosphere mantle makes it directly comparable to most passive margins whose formation lead to mantle exhumation. This unique field analogue has therefore a strong potential for the seismic interpretation of the so-called “hyper-extended margins”.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号