首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
海洋学   2篇
天文学   1篇
  2017年   1篇
  2015年   1篇
  2008年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
A cosmic dust detector for use onboard a satellite is currently being constructed from piezoelectric lead zirconate titanate (PZT). The characteristics of the PZT detector were studied by bombarding it with hypervelocity iron particles, which were supplied by a Van de Graaff accelerator. There was a linear relationship between the rise time of the signal observed from the detector and the particle's velocity, which was above 10 km/s on impact. It was also found that the rise time was almost independent of the collisional angle between the particles and the PZT surface within the limits of the particle's parameters used in this experiment.  相似文献   
2.
An expedient piezoelectric coupled buoy energy harvester from ocean waves is developed. The harvester is made of several piezoelectric coupled cantilevers attached to a floating buoy structure, which can be easily suspended in the intermediate and deep ocean for energy harvesting. In the buoy structure, a slender cylindrical floater is attached on a large sinker. The energy harvesting process is realized by converting the transverse ocean wave energy to the electrical energy via the piezoelectric patches mounted on the cantilevers fixed on the buoy. A smart design of the buoy structure is developed to increase the energy harvesting efficiency by investigation of the effects of the sizes of the floater and the sinker. A numerical model is presented to calculate the generated electric power from buoy energy harvester. The research findings show that up to 24 W electric power can be generated by the proposed expedient buoy harvester with the length of the piezoelectric cantilevers of 1 m and the length of the buoy of 20 m. The technique proposed in this research can provide an expedient, feasible and stable energy supply from the floating buoy structure.  相似文献   
3.
A renewable energy harvester using the piezoelectric effect is developed for the ocean tidal and wind flow. The harvester is made of connected driving blades to an octo-generator, which has a rotator with n blades and a stator attached by eight mass-spring-piston-cylinder-piezoelectricity devices. The resonance and force magnification are utilized to increase the power output of the harvester. A corresponding mathematical model is developed to calculate the root mean square of the generated electric power. The simulation results indicate that the generated power is largely enhanced when the near-resonant condition is established. The power increases with increases in the magnetic flux density, the large-to-small diameter ratio of the cylinder, the size of magnetic bar face, and decreases in the gap between two magnetic faces and the size of the piezoelectric bar face. A generated power of 5 kW is realized by the harvester working under an ocean tidal speed, V = 1.75 m/s, and its geometric and material properties of driving length L = 7.5 m, spring constant kv = 65000 N/m, gap between the two magnets s = 0.0015 m, large to small diameter ratio of the cylinder z = 6, and magnetic flux density Br = 1.45 T.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号