首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   4篇
  国内免费   2篇
地球物理   2篇
地质学   3篇
海洋学   10篇
自然地理   1篇
  2022年   1篇
  2019年   3篇
  2018年   1篇
  2017年   2篇
  2016年   1篇
  2015年   1篇
  2011年   1篇
  2008年   1篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  1999年   1篇
  1996年   1篇
排序方式: 共有16条查询结果,搜索用时 890 毫秒
1.
Biocorrosion by Bivalves   总被引:2,自引:0,他引:2  
Karl  Kleemann 《Marine Ecology》1996,17(1-3):145-158
Abstract. A survey of the historical background of chemically boring bivalves and the proposed methods of boring, indications for biocorrosion, observations, and experimental results are provided. The regional impact to the ecosystem is discussed with examples from the N. Adriatic, Caribbean, and E. Pacific. The fossil record of the geologically oldest biocorroders extends back into the Mesozoic, i.e ., U. Triassic for Lithophaga and Jurassic for gastrochaenids.  相似文献   
2.
Bromley  R.G. 《Geologie en Mijnbouw》1999,78(2):175-177
A trace fossil, Centrichnus eccentricus, was found beneath a saddle oyster (Anomia ephippium) that was preserved undisturbed on its substratum (a shell of Pecten jacobaeus), at the site of attachment of the calcified byssus.  相似文献   
3.
Bioeroding sponges belong to the most dominant bioeroders, significantly contributing to the erosion of coral reefs. Some species are tolerant or even benefit from environmental conditions such as ocean warming, acidification, and eutrophication. In consequence, increases in sponge bioerosion have been observed on some coral reefs over the last decades. The Abrolhos Bank is the largest coral reef system in the South Atlantic. It has been affected by sedimentation, eutrophication, overfishing, and climate change, mainly affecting coastal reefs, and at lesser intensity outer ones as well. This study aimed to describe spatial and temporal patterns in bioeroding sponge distribution in carbonate substrates in the Abrolhos Bank. Photo‐quadrats were used to compare bioeroding sponge abundance between two shallow reefs: a coastal, Pedra de Leste (PL), and an outer reef, Parcel dos Abrolhos (PAB). Each individual was delimitated over the substrate by determining the sponge surface through a line connecting the outermost papillae. The study was conducted over 6 years in 2008–2009 and 2013–2016. Four species of bioeroding sponges were identified: Cliona carteri Ridley, 1881, C. delitrix Pang, 1973, C. cf. schmidtii Ridley, 1881, and Siphonodictyon coralliphagum Rützler, 1971. The distribution and abundance of species varied between the inner and outer reefs and across the years, and displayed certain selectivity for the calcareous substrates recorded. Crustose coralline algae (CCA) were the main substrate excavated by the most abundant bioeroding species, C. carteri, and represented 70% of the substrate types occupied by this sponge (CCA, coral overgrown by CCA and plain coral). The highest abundance of bioeroding sponges observed in photo‐quadrats was 21.3 individuals/m2 at the outer reefs (PAB) in 2014. The abundances or areal extents of bioeroding sponges were up to 10 times greater on the outer reefs than on the coastal ones, where sedimentation is higher and more strongly influenced by siliciclastic material. Moreover, a higher herbivorous fish biomass has been reported on outer reefs which could also influence the higher abundance of bioeroding sponges in outer reefs. During the study period of 6 years, an increase in bioeroding sponge abundance was observed at the outer reefs (PAB), with the sea surface temperature increase. As CCA have an important role in reefal cementation and carbonate production in the Abrolhos reefs, a bioerosion impact might be expected, in particular, on the outer reefs.  相似文献   
4.
The Late Pleistocene littoral ridges of southern South America, especially those of the north of Argentinean Patagonia, contain remains of mollusk shells with bioerosion traces. Eleven sites from marine isotope stages (2 from MIS 7, 4 from MIS 5e) and five sites from modern beaches from northern Río Negro Province, with 40 taxa (17 bivalves and 23 gastropods) were analyzed, in the area between west of Baliza San Matías and Las Grutas (41°S). Three ichnogenera were identified in deposits of MIS 7: Entobia, Gastrochaenolites (Domichnia) and Oichnus (Praedichnia) with one ichnospecies (G. torpedo). Six ichnogenera were identified in deposits of MIS 5e: Entobia, Meandropolydora, Pinaceocladichnus, Iramena, Caulostrepsis and Oichnus with one ichnospecies (O. simplex). Seven ichnogenera were identified from modern beaches: Entobia, Meandropolydora, Iramena, Caulostrepsis, Pinaceocladichnus, Gastrochaenolites (Domichnia) and Oichnus (Praedicnia), with two ichnospecies (O. simplex and O. paraboloides). On this basis, it is inferred that Pleistocene benthic communities were constituted from cheilostome bryzoans and polychaete annelids, together with drilling bivalves, predatory gastropods and overall warm-water species of mollusks. Of these, Chama iudicai was found on Plicatula gibbosa from MIS 7 and MIS 5e. The record of warm temperature species suggests a higher sea surface temperature (SST) than the present one and/or the influence of the warm southward Brazilian Current affecting the waters of Golfo San Matías. On the modern beaches surveyed, there is an increase in polychaete annelids, cheilostome bryzoans, temperate-cold species and drilling bivalves, as well as sandy substrate species, which together with an increase of Gastrochaenolites and Caulostrepsis, suggest a colder climate due to the greater influence of the Malvinas Current during the Holocene.  相似文献   
5.
Studies of Australian rock coasts (except carbonate reefs) are reviewed and considered in view of recent process and morphological studies. The unique nature of the Australian coast, its geographical distribution and relative stability mean that it is a productive environment in which to research fundamental questions concerning rock coasts. Future research directions are identified, specifically in the areas of processes, morphology and modelling.  相似文献   
6.
珊瑚礁生物地貌过程的生物建造与生物侵蚀   总被引:1,自引:0,他引:1  
珊瑚礁生物建造和生物侵蚀是珊瑚礁生物地貌过程的两个关键环节,两者之间的平衡关系决定着珊瑚礁生物地貌过程的动态变化,控制着珊瑚礁地貌结构和形态。珊瑚礁生物建造和生物侵蚀受海水富营养化、海水温度异常、海平面变化和风暴等多种自然环境因素的影响,同时还面临日益加剧的人类开发活动的威胁。现代全球变化和人类活动影响下的珊瑚礁生物建造和生物侵蚀研究对认识珊瑚礁生物地貌过程与全球变化和人类活动影响的相互作用和响应机制有重要意义。对当前国际上珊瑚礁生物地貌过程的生物建造和生物侵蚀研究的现状进行了概述,并对国内的相关研究提出了建议。  相似文献   
7.
Bioerosion is a natural process in coral reefs. It is fundamental to the health of these ecosystems. In the Eastern Tropical Pacific (ETP) coral reefs, the most important bioeroders are sponges, bivalves, sea urchins and the fish Arothron meleagris. In the 1980s, El Niño caused high coral mortality and an increase in macroalgal growth. As a result, greater sea urchin bioerosion occurred. This weakened the reef framework. Considering the high vulnerability of the ETP coral reefs, the goal of this study was to determine the current bioerosion impact of the sea urchin Diadema mexicanum along the western coasts of Mexico, El Salvador, Costa Rica and Panamá. The balance between coral bioaccretion and sea urchin bioerosion was also calculated. Between 2009 and 2010, in 12 coral reefs localities, D. mexicanum density, bottom cover and rugosity were quantified along band transects. The daily bioerosion rate was obtained from the amount of carbonates evacuated by sea urchins per unit time. The rate of coral accretion was calculated by multiplying the coral growth rate of the dominant genus by the density of their skeleton and by their specific coral cover. The localities were dissimilar (R = 0.765, P < 0.001) in terms of live coral cover, crustose calcareous algae, turf cover, rugosity index, and density and size of D. mexicanum. At all sites, with the exception of Bahía Culebra (Costa Rica), coral bioerosion was less than coral bioaccretion. Diadema mexicanum plays a dominant role in the balance of carbonates in the ETP, but this depends on reef condition (protection, overfishing, eutrophication) and so the impacts can be either positive or negative.  相似文献   
8.
Excavating sponges often compete with reef‐building corals. To study sponge–coral interactions, we devised a design of hybrid cores that allows sponges and corals to be arranged side by side with similar size and shape, mimicking the situation of neighbouring organisms. Compared to earlier methods that attached sponge cores onto coral surfaces, hybrid cores provide an opportunity to study organism interactions under conditions more equal to the interacting partners. The use of hybrid cores was demonstrated for the excavating sponge Cliona orientalis and the massive coral Porites, which commonly interact on the Great Barrier Reef. Cliona orientalis and massive Porites were cut into half‐moon shaped explants and combined as hybrid cores under replicate conditions. After 90 days in an aquarium setting, positive growth of Cl. orientalis along with net bioerosion were observed in sponge control cores that combined Cl. orientalis with blank substrate. However, when Cl. orientalis and massive Porites were in contact in interaction cores, the sponge displayed negative growth and undetectable bioerosion, and was slightly overgrown by the coral. Cliona orientalis may have developed tissue extension beneath the living coral tissue, but growth and net calcification rates of massive Porites were apparently not affected by Cl. orientalis when comparing the interaction cores to coral control cores that combined massive Porites with blank substrate. Overall, the present work demonstrated that hybrid cores can be used to generate conditions suitable for studying sponge–coral interactions in the laboratory, which can also be applied in the field.  相似文献   
9.
Benthic structure of coral reefs determines the availability of refuges and food sources. Therefore, structural changes caused by natural and anthropogenic disturbances can have negative impacts on reef‐associated communities. During the 1990s, coral reefs from Bahía Culebra were considered among the most diverse ecosystems along the Pacific coast of Costa Rica; however, recently they have undergone severe deterioration as consequence of chronic stressors such as El Niño‐Southern Oscillation and harmful algal blooms. Reef fish populations in this area have also been intensely exploited. This study compared reef fish assemblages during two periods (1995–1996 and 2014–2016), to determine whether they have experienced changes as a result of natural and anthropogenic disturbances. For both periods, benthic composition and reef fish abundance were recorded using underwater visual censuses. Live coral cover (LCC) decreased from 43.09 ± 18.65% in 1995–1996 to 1.25 ± 2.42% in 2014–2016 (U = 36, p < 0.05). Macroalgal cover (%) in 2014–2016 was sixfold higher than mean values reported for the Eastern Tropical Pacific region. Mean (±SD) fish species richness in 1995–1996 (36.67 ± 14.20) was higher than in 2014–2016 (23.00 ± 9.14; U = 20, p < 0.05). Over 40% of reef fish orders observed in 1995–1996 were not detected in the 2014–2016 surveys, including large‐bodied predators. Reduction in abundance of fish predators such as sharks, grunts, and snappers is likely attributed to changes in habitat structure. Herbivorous such as parrotfishes and pufferfishes increased their abundance at sites with low LCC, probably in response to predators decline and increased algal cover. These findings revealed significant degradation and drastic loss of structural complexity in coral reefs from Bahía Culebra, which now are dominated by macroalgae. The large reduction in structural complexity of coral reefs has resulted in the loss of diversity and key ecological roles (e.g., predation and herbivory), thus potentially reducing the resilience of the entire ecosystem.  相似文献   
10.
微生物对珊瑚骨骼的侵蚀作用相对肉眼可见的大型生物侵蚀更加隐蔽, 研究也相对稀少, 国内更是空白。本文对采自涠洲岛、大亚湾以及西沙琛航岛的滨珊瑚骨骼切片在扫描电镜下开展微生物侵蚀研究。在涠洲岛和大亚湾的滨珊瑚骨骼切片中存在微生物侵蚀形成的“橘色条带”, 可能与当地水体富营养化有关, 而琛航岛的样品中则没有类似的条带。扫描电镜观察发现, 这些“橘色条带”为内生藻Ostreobium quekettii, 是一种热带珊瑚礁区常见的侵蚀微生物。O. quekettii侵蚀的珊瑚骨骼结构被破坏, 其厚度减小, 孔隙率提高了1.54%至6.76%、抗压强度下降了27.1%至51.2%, 使得珊瑚骨骼变得更加“疏松”, 且在整个骨骼次表面形成了一层“骨质疏松层”。该种侵蚀微生物扮演了“先行者”的角色, 使珊瑚更容易被大型生物侵蚀, 而大型生物侵蚀又会进一步促进微生物侵蚀, 该“正反馈效应”正好解释了在富营养化的南海北部发现的珊瑚骨骼内侵蚀加剧的现象。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号