首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
海洋学   2篇
  2009年   1篇
  1998年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
The ventilation of burrows by tube-dwelling benthos is understood to be important in determining rates of exchange of solutes between the sediment and overlying water. However, few models have attempted to link the burrow ventilation behavior of tube-dwelling organisms with their geochemical consequences. The classic cylinder model of bioirrigation in muddy sediments (Aller, R.C., 1980. Quantifying solute distributions in the bioturbated zone of marine sediments by defining an average microenvironment. Geochimica et Cosmochimica Acta 44, 1955–1965) links pore-water processes and burrow sizes and distributions in the sediment by assuming that burrows are fully flushed. The equivalence between the cylinder model and the more commonly used one-dimensional non-local exchange model depends upon this assumption. However, this assumption has seldom been tested in the field. We have extended the cylinder model of bioirrigation to include burrow ventilation activities of organisms. Burrow ventilation is modeled as a simple non-local exchange of burrow water with overlying water. Model simulations indicate that burrow ventilation has a large effect on vertical profiles and fluxes of solute tracers. We collected data on burrow geometry in the field by CT-scanning freshly collected sediment cores. At the same study sites, we measured activity profiles of 222Rn, a naturally occurring radionuclide tracer of pore-water transport. With model geometry independently constrained, we tested the model by comparing our model-predicted profiles with measured profiles. Our results demonstrate that burrows in the field are not fully flushed. Our estimated burrow ventilation rates compare favorably with previous laboratory measurements. The inclusion of realistic burrow ventilation in this pore-water transport model strongly affects modeled solute profiles and fluxes. We demonstrate how model parameters can be determined from field samples and present a model that more realistically simulates pore-water transport processes in muddy sediments.  相似文献   
2.
Benthic Nutrient Recycling in Port Phillip Bay, Australia   总被引:8,自引:0,他引:8  
Benthic chamber measurements of the reactants and products involved with biogenic matter remineralization (oxygen, ammonium, nitrate, nitrite, phosphate, silicate, TCO2and alkalinity) were used to define solute exchange rates between the sediment and overlying water column of Port Phillip Bay, Australia. Measurements at various sites throughout the bay, conducted during the summers of 1994 and 1995, indicate that the variability in flux values within a site is comparable to year-to-year variability (±50%). Four regions of the bay were distinguished by sediment properties and the northern region was identified as having 3–30 times greater nutrient regeneration rates than the other regions. Benthic recycling accounted for 63 and 72% of the annualized N and P input, respectively, to the entire bay as determined by summing benthic, dissolved riverine, atmospheric and dissolved effluent sources. However, bay-wide sedimentary denitrification accounted for a loss of 63% of the potentially recyclable N. This fraction is higher than many other coastal regions with comparable carbon loading. Denitrification efficiency is apparently not enhanced by benthic productivity nor by bio-irrigation. The rate of bio-irrigation is negatively correlated with denitrification efficiency. Bio-irrigation was studied using radon-222 and CsCl spike injection chamber measurements. Radon fluxes from sediments in Port Phillip Bay were enhanced over the diffusive flux by 3–16 times. The modelled rate of loss of Cs from chamber water was positively correlated with radon flux enhancement results. Both methods identify regions within Port Phillip Bay that have particularly high rates of non-diffusive pore-water overlying water solute exchange.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号