首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   0篇
  国内免费   2篇
测绘学   1篇
地球物理   8篇
地质学   3篇
海洋学   3篇
自然地理   1篇
  2019年   2篇
  2016年   1篇
  2015年   1篇
  2013年   1篇
  2012年   1篇
  2010年   1篇
  2009年   4篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2005年   2篇
排序方式: 共有16条查询结果,搜索用时 93 毫秒
1.
Guo CL  Zhou HW  Wong YS  Tam NF 《Marine pollution bulletin》2005,51(8-12):1054-1061
Surface sediment samples were collected from seven mangrove swamps in Hong Kong SAR with different degrees of contamination. The total concentrations of 16 PAHs in these sediments ranged from 169.41 to 1058.37 ng g−1 with the highest concentration found in Ma Wan and the lowest in Kei Ling Ha Lo Wai mangrove swamp. In each swamp, three bacterial consortia were enriched from sediments using phenanthrene (Phe) as the sole carbon and energy source, and individual bacterial colony showing Phe degradation was isolated and identified by 16S rDNA gene sequence. The consortia enriched from Sai Keng and Ho Chung sediments had highest ability to degrade mixed PAHs in liquid medium, with 90% Phe and Fla (fluoranthene) degraded in 7 days. On the other hand, Kei Ling Ha Lo Wai-enriched consortia degraded less than 40% Phe and Fla. Pyrene (Pyr) was hardly degraded by the consortia enriched from sediments. Bacterial isolates, namely Rhodococcus (HCCS), Sphingomonas (MWFG) and Paracoccus (SPNT) were capable to degrade mixed PAHs (Phe + Fla + Pyr). Their degradation percentages could be lower, comparable or even higher than their respective enriched consortia, depending on the consortium and the type of PAH compounds. These results suggest that PAH-degrading bacteria enriched from mangrove sediments, either as a mixed culture or as a single isolate could be used for PAHs bioremediation.  相似文献   
2.
Yu KS  Wong AH  Yau KW  Wong YS  Tam NF 《Marine pollution bulletin》2005,51(8-12):1071-1077
The biodegradability of a mixture of PAHs, namely fluorene (Fl), phenanthrene (Phe) and pyrene (Pyr), in mangrove sediment slurry was investigated. At the end of week 4, natural attenuation based on the presence of autochthonous microorganisms degraded more than 99% Fl and Phe but only around 30% of Pyr were degraded. Biostimulation with addition of mineral salt medium degraded over 97% of all three PAHs, showing that nutrient amendment could enhance Pyr degradation. Bioaugmentation with inoculation of a PAH-degrading bacterial consortium enriched from mangrove sediments did not show any promotion effect and the degradation percentages of three PAHs were similar to that by natural attenuation. Some inhibitory effect was observed in bioaugmentation treatment in week 1 with only 50% Fl and 70% Phe degraded. These results indicate that autochthonous microbes may interact and even compete with the enriched consortium during PAH biodegradation. Natural attenuation appeared to be the most appropriate way to remedy Fl- and Phe-contaminated mangrove sediments while biostimulation was more capable to degrade Pyr-contaminated sediments. The study also shows that although a large portion of the added PAHs (more than 95%) was adsorbed onto the sediments at the beginning of the experiment, most PAHs were degraded in 4 weeks, suggesting that the degraders could utilize the adsorbed PAHs efficiently.  相似文献   
3.
基于GML的WFS研究与实现   总被引:1,自引:0,他引:1  
罗显刚  谢忠  吴亮  刘丹 《地球科学》2006,31(5):639-644
网络要素服务(webfeature services, WFS) 是空间数据互操作的一个重要组成部分, 能为不同GIS数据格式提供要素级的交互.基于地理标志语言(geography markup language, GML) 的WFS能够为Web环境下的空间数据互操作技术和空间信息处理互操作技术提供简单而又有效的基本数据访问、要素编辑(包括添加、删除、更新)、要素的组合查询.通过研究开放式GIS联盟(open GIS consortiumInc., OGC) 的标准规范, 使用MAPGIS基础平台和.NET编译环境实现WFS, 使用XML传输和存储地理信息, 其中包括属性和地理要素的几何属性.最后给出了以MAPGIS平台为基础的基于GML的WFS的体系结构和实现方法.WFS只解决了空间数据互操作的一部分, 为了更好的进行空间数据互操作, WCS、WCTS的实现是必不可少的.   相似文献   
4.
2013年青岛输油管道爆炸,大量石油污染了附近海岸。课题组采集了污染的沉积物样品,以原油为唯一碳源和能源,富集了四个石油降解菌群。生物多样性和群落分析表明,Luteibacter、Parvibaculum 和属于食烷菌科的一个属是降解菌群的主要优势菌,都属于变形菌门。从石油降解菌群中分离筛选,获得了9株具有不同16S rRNA基因序列的降解菌,分别属于8个属。重量法测定降解菌的石油降解率,其中5株的石油降解率大于30%。GC-MS分析结果表明,石油降解菌多倾向于降解烷烃,对多环芳烃的降解能力较差,其中5株细菌的烷烃降解率较大,仅1株菌D2对多环芳烃的降解率较大,其降解率在34.9%到77.5%。通过对高通量数据的分析,表明食烷菌属是菌群A和菌群E的主要降解菌群,其中筛选获得的菌株E4可能是菌群E的一株优势降解菌。本研究所筛选菌株证明了其石油降解潜力,为油污染海滩生物修复提供了菌株资源。  相似文献   
5.
黄土地区石油污染土壤生物修复的强化技术初探   总被引:1,自引:0,他引:1  
以石油为典型污染物,在本次试验前期工作筛选保藏的众多优势石油降解细菌中选择4株降解能力突出的菌,对该4菌株(分别编号为A、B、C、D)进行随机混合构建优势降解菌群。结果表明:菌群A-C-D降解石油能力最强,3 d内原油的降解率达到了39.67%,比单菌除油率提高了13.21%;对该菌群的最佳投加配比进行确定,菌群的最佳接种配比为A∶C∶D=1∶2∶0.5,3 d内菌群A-C-D在不同接种配比情况下降解率变化范围为27.8%~44.2%,最高值与最低值相差16.4%,因此菌群间各菌必须维持在一定的数量配比的情况下才能达到理想的降解效果。对影响生物修复效果的环境因素,如营养物质(C、N、P)、表面活性剂、通氧量、电子受体等进行综合考虑,通过正交试验确定菌群A-C-D的最佳修复条件为:营养物质配比C∶N∶P为75∶8∶3,表面活性剂为0.5%,通气条件为六层纱布,电子受体H2O2的加入量为1.5%。在最佳修复条件下,3 d内原油的降解率达到6146%,比自然条件修复下的除油率4.7%提高了56.76%,较只进行菌种强化时的最高除油率44.2%提高了约17%。  相似文献   
6.
Polycyclic aromatic hydrocarbons are ubiquitous pollutants in the environment, and most high molecular weight PAHs cause mutagenic, teratogenic and potentially carcinogenic effects. While several strains have been identified that degrade PAHs, the present study is focused on the degradation of PAHs in a marine environment by a moderately halophilic bacterial consortium. The bacterial consortium was isolated from a mixture of marine water samples collected from seven different sites in Chennai, India. The low molecular weight (LMW) PAHs phenanthrene and fluorine, and the high molecular weight (HMW) PAHs pyrene and benzo(e)pyrene were selected for the degradation study. The consortium metabolized both LMW and HMW PAHs. The consortium was also able to degrade PAHs present in crude oil-contaminated saline wastewater. The bacterial consortium was able to degrade 80% of HMW PAHs and 100% of LMW PAHs in the saline wastewater. The strains present in the consortium were identified as Ochrobactrum sp., Enterobacter cloacae and Stenotrophomonas maltophilia. This study reveals that these bacteria have the potential to degrade different PAHs in saline wastewater.  相似文献   
7.
Pseudomonas putida MHF 7109 has been isolated and identified from cow dung microbial consortium for biodegradation of selected petroleum hydrocarbon compounds – benzene, toluene, and o‐xylene (BTX). Each compound was applied separately at concentrations of 50, 100, 250, and 500 mg L?1 in minimal salt medium to evaluate degradation activity of the identified microbial strain. The results indicated that the strain used has high potential to degrade BTX at a concentration of 50 mg L?1 within a period of 48, 96, and 168 h, respectively; whereas the concentration of 100 mg L?1 of benzene and toluene was found to be completely degraded within 120 and 168 h, respectively. Sixty‐two percent of o‐xylene were degraded within 168 h at the 100 mg L?1 concentration level. The maximum degradation rates for BTX were 1.35, 1.04, and 0.51 mg L?1 h?1, respectively. At higher concentrations (250 and 500 mg L?1) BTX inhibited the activity of microorganisms. The mass spectrometry analysis identified the intermediates as catechol, 2‐hydroxymuconic semialdehyde, 3‐methylcatechol, cis‐2‐hydroxypenta‐2,4‐dienoate, 2‐methylbenzyl alcohol, and 1,2‐dihydroxy‐6‐methylcyclohexa‐3,5‐dienecarboxylate, for BTX, respectively. P. putida MHF 7109 has been found to have high potential for biodegradation of volatile petroleum hydrocarbons.  相似文献   
8.
石油降解菌对石油烃的降解能力及影响因素研究   总被引:2,自引:0,他引:2  
采取油浓度梯度升高的方法,从胜利油田石油污染土壤中富集分离出以柴油为碳源和能源的优势除油混合菌B4。混合菌中分离出7株可培养菌。混合菌在含油0.5%的无机盐液体培养基中培养7天后柴油的去除率达到90.4%。该菌有较好的耐受性,当盐度达3.5时,油浓度达1.0%,亦有较好长势。混合菌对油污染土壤的修复有较好的效果,特别是加入营养盐,降解率达85.6%。混合菌脱氢酶动态变化的初步研究结果表明微生物活性变化与降解率有很好的相关性。  相似文献   
9.
Sensor networks are an essential tool for environmental scientists. As scientists and engineers are beginning to utilize these new methods and devices in their fieldwork, they need to be actively involved in the future of sensor-networking development. Continued sensor network innovation is important for improved standardization, affordability, and interoperability. This article uses a storm water case study to outline an end-to-end open-innovation sensor network. Open innovation by scientists, engineers, and entities is the collaborative process of creating value for this project in permeable paver runoff data and advances within sensor networking. This article focuses on the technical implementation of the near–real-time location and temporally aware sensor network. Data are streamed in near–real-time with subliter precision to the cloud using common off-the-shelf routers. The sensors use Maxim's 1-wire? protocol, and the unique digital serial numbers confirm the data. The data retrieved compare residence times within the permeable paver catchment basins and the control basin. Sensor network advances are made by bridging the gap between sensor protocols and communication systems. These advances enable the development of open-source representational state transfer web services. Our successful implementation serves as an example for others to study and expand upon for a variety of monitoring solutions.  相似文献   
10.
Mangroves are sensitive ecosystems of prominent ecological value that lamentably have lost much of their areas across the world. The vulnerability of mangroves grown in proximity to cities requires the development of new technologies for the remediation of acute oil spills and chronic contaminations. Studies on oil remediation are usually performed with in vitro microcosms whereas in situ experiments are rare. The aim of this work was to evaluate oil degradation on mangrove ecosystems using in situ microcosms seeded with an indigenous hydrocarbonoclastic bacterial consortium (HBC). Although the potential degradation of oil through HBC has been reported, their seeding directly on the sediment did not stimulate oil degradation during the experimental period. This is probably due to the availability of carbon sources that are easier to degrade than petroleum hydrocarbons. Our results emphasize the fragility of mangrove ecosystems during accidental oil spills and also the need for more efficient technologies for their remediation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号