首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
天文学   3篇
  2008年   1篇
  2005年   2篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
Many atmospheric measurement systems, such as the sounding instruments on Voyager, gather atmospheric information in the form of temperature versus pressure level. In these terms, there is considerable consistency among the mean atmospheric profiles of the outer planets Jupiter through Neptune, including Titan. On a given planet or on Titan, the range of variability of temperature versus pressure level due to seasonal, latitudinal, and diurnal variations is also not large. However, many engineering needs for atmospheric models relate not to temperature versus pressure level but atmospheric density versus geometric altitude. This need is especially true for design and analysis of aerocapture systems. Drag force available for aerocapture is directly proportional to atmospheric density. Available aerocapture “corridor width” (allowable range of atmospheric entry angle) also depends on height rate of change of atmospheric density, as characterized by density scale height. Characteristics of hydrostatics and the gas law equation mean that relatively small systematic differences in temperature versus pressure profiles can integrate at high altitudes to very large differences in density versus altitude profiles. Thus, a given periapsis density required to accomplish successful aerocapture can occur at substantially different altitudes (∼150-300 km) on the various outer planets, and significantly different density scale heights (∼20-50 km) can occur at these periapsis altitudes. This paper will illustrate these effects and discuss implications for improvements in atmospheric measurements to yield significant impact on design of aerocapture systems for future missions to Titan and the outer planets. Relatively small-scale atmospheric perturbations, such as gravity waves, tides, and other atmospheric variations can also have significant effect on design details for aerocapture guidance and control systems. This paper will discuss benefits that would result from improved understanding of Titan and outer planetary atmospheric perturbation characteristics. Details of recent engineering-level atmospheric models for Titan and Neptune will be presented, and effects of present and future levels of atmospheric uncertainty and variability characteristics will be examined.  相似文献   
2.
Two-point boundary value problems appear frequently in space trajectory design. A remarkable example is represented by the Lambert’s problem, where the conic arc linking two fixed positions in space in a given time is to be characterized in the frame of the two-body problem. Classical methods to numerically solve these problems rely on iterative procedures, which turn out to be computationally intensive in case of lack of good first guesses for the solution. An algorithm to obtain the high order expansion of the solution of a two-point boundary value problem is presented in this paper. The classical iterative procedures are applied to identify a reference solution. Then, differential algebra is used to expand the solution of the problem around the achieved one. Consequently, the computation of new solutions in a relatively large neighborhood of the reference one is reduced to the simple evaluation of polynomials. The performances of the method are assessed by addressing typical applications in the field of spacecraft dynamics, such as the identification of halo orbits and the design of aerocapture maneuvers.  相似文献   
3.
In 2001, NASA began assembling the Aerocapture Systems Analysis Team, a team of scientists and engineers from multiple NASA centers. Their charter is to perform high-fidelity analyses of delivering scientifically compelling orbital missions that use aerocapture for orbit insertion at their destinations. After establishing scientific credibility, studies focus on aerocapture systems design and performance, including approach navigation, flight mechanics, aerothermodynamics, and thermal protection. The team's October 2001-September 2002 study examined a mission to explore the organic environment of Titan and its chemical, geological, and dynamical context. Its architecture includes a Titan polar orbiter that would complete and extend Cassini's soon-to-begin global mapping, aiding global extrapolation of findings from a mobile in situ element (rover, blimp, etc.). The in situ element would perform remote sensing and in situ investigations, for analysis and characterization of Titan's surface, shallow subsurface, atmosphere, processes occurring there, and energy sources driving it all. The study concentrated on the orbiter and orbit insertion, largely treating the in situ element as a black box with data relay requirements. October 2002-September 2003 the team studied a mission to perform Cassini/Huygens-level exploration of the Neptune system. Before aerocapture this mission would deploy and support multiple Neptune atmospheric entry probes. After aerocapture the orbiter uses Triton as a “tour engine”, in much the same manner as Cassini uses Titan, to provide many Triton flybys and orbit evolution for detailed investigation of Neptune's interior, atmosphere, magnetosphere, rings, and satellites.This presentation summarizes the missions’ science objectives, instrumentation, and data requirements that served as the foundations for the studies, and describes mission design requirements and constraints that affect the science investigations.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号