首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   3篇
大气科学   2篇
地球物理   3篇
天文学   1篇
自然地理   1篇
  2007年   1篇
  2006年   2篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  2000年   1篇
排序方式: 共有7条查询结果,搜索用时 156 毫秒
1
1.
通过对比两次快速晕状日冕物质抛射(CME)事件,分析相应的日面和行星际的观测资料,发现源区距离冕洞较远的CME引起了极强的太阳高能粒子(Solar Energetic Particle,SEP)事件,而源区非常靠近冕洞的CME则没有引起大的SEP事件.该结果表明,冕洞可能对CME形成SEP事件有阻碍作用.继而分析1997~2003年所有爆发在冕洞边缘的快速晕状CME,发现源区离冕洞距离小于02Rs(太阳半径)的CME均没有引起大的SEP事件.从而进一步证实了冕洞可能对邻近CME形成大SEP事件有影响,它阻碍SEP事件的形成.最后讨论了冕洞阻碍CME形成大SEP事件的可能原因.  相似文献   
2.
提出一种可能产生行星际磁场南北分量扰动的物理机制,并将此物理机制运用于三维运动学模型,对原模型作了改进. 使用改进后的模型模拟研究了1997年5月12日06:30UT爆发的晕状(halo)日冕物质抛射(CME)事件对行星际磁场和等离子体的扰动,以及1978-1981年间17个与CME有关的行星际扰动事件. 在17个事件中有14个事件可准确预测出行星际磁场南北分量的方向,准确率为82%. 结果表明,模型计算出的行星际磁场南北分量的扰动方向与观测的方向是基本一致的.  相似文献   
3.
Here we present a preliminary analysis of a helical eruptive prominence at the east limb of the Sun on 21 April 2001. Unusually this eruption is associated with a double CME. We have tried to study the morphology of the event, energy budget of the prominence and associated CMEs. Our analysis shows that the prominence and first CME started simultaneously from the limb and prominence carries sufficient energy to feed both the CMEs. Moreover, it is also concluded that CMEs are magnetically driven and internally powered.  相似文献   
4.
1997年1月6日爆发的日冕物质抛射(CME)到达地球时引起了强烈的地球物理效应,CME在行 星际空间传播时,广州的多方向μ介子望远镜观测到银河宇宙线强度的变化. 本文采用 小波分析方法分析了磁暴前后广州台宇宙线强度的频谱变化特征,结果表明,在磁暴前 宇宙线周期为16~32h的信号发生了较明显的变化,其中周期为24~32h的周期特征过去没有 被报道过. 广州台垂直方向宇宙线强度的谱在磁暴发生前48h就出现明显的变化,比各向异 性分析方法得到的时间提前量更大. 同时还分析了几个方向宇宙线强度的最强信号以及达到 最大值的时间,并进行了简要的分析与讨论.  相似文献   
5.
Well-developed low speed and high temperature streaks in association with the alignment of convection cells are observed in a large-eddy-simulation (LES) generated strongly sheared convective boundary-layer flow, which is driven by a geostrophic wind speed of 15 m s-1 and a surface kinematic heat flux of 0.05 K m s-1. Vortices that drive streaky structures are identified through an eigenvalue method (lambda;2method) near the surface. These vortices are highly elongated along the quasi-streamwise direction alternating sign of the x-component of vorticity (x). By conditional sampling of fully developed vortices, a statistically significant coherent structure is educed. The educed vortex is elongated to the streamwise direction with the elevation angle of about 17° above the horizontal surface. However, the horizontal tilting is not clearly demonstrated in the present simulation. Fluctuation fields in the domain of the educed vortex show the existence of a low speed and high temperature streak as a direct consequence of momentum and heat transport by vortical motions. The strong ejection(upward transport of low momentum or high temperature)occurring at the higher level than that of the strong sweep (downward transport of high momentum and low temperature) can be explained from the spatial distribution of the fluctuationfields of velocity and temperature. The contribution of ejection to the Reynolds stress at z/h1 = 0.18 is about 75%, which is slightly greater than that (70% at z/h1 = 0.173) for the neutrally stratified atmospheric boundary layer. Ejection is also found to be dominant for the turbulent heat flux.  相似文献   
6.
Wanquan Ta  Zhibao Dong 《Geomorphology》2007,89(3-4):348-357
Ejection of sand grains from a sand surface is assumed to result from cascade collision caused by the impact of a saltating particle. Allowing for only two-body cascade collision and introducing new quantities such as the cross-section for sand grain–grain collisions and sand surface binding energy, the theoretical model for the cascade collision of ion particles is applied to simulate sand grain/bed collision processes. The results of simulations indicate that the collision cascade events caused by impacting particles can eventually lead to the ejection of grains taking place from the sand surface. The number of ejected grains at any surface point is found to be proportional to the fractional energy deposited at that point and inversely proportional to the sand surface binding energy. This cascade collision model also confirms that the peak in the spatial distribution of ejected grains does not appear at the impact point but is located downwind, and that the speed distribution of ejected grains at a fixed angle exhibits a peak having a value directly related to the ratio of surface binding energy to the mass of the ejected grain. The angular distribution at a certain ejection speed also exhibits a maximum at an ejection angle near 90°. The model also offers a new interpretation for the observed variability in the number of ejected grains under constant impact velocity; this variability is directly related to the wide distribution of the energy deposition in the surface layer of the sand bed.  相似文献   
7.
Wind-tunnel experiments of drifting snow were carried out andsplash functions were formulated to describe probability distributions of vertical restitution coefficient, horizontal restitution coefficient and ejection number when a natural snow particle collided at a natural snow surface. The following results were obtained:(1) The vertical restitution coefficient was usually larger than unity and decreased sharply with impact angle. At smaller impact angles around 5 degrees the vertical restitution coefficient exceeded a magnitude of ten.(2) The horizontal restitution coefficient, ranging from -1 to 1.5, decreased with impact velocity, but was not clearly dependent on impact angle.(3) The ejection number amounted to five per impact and increasedwith impact velocity.(4) Three splash functions to express the probability distributions of the vertical restitution coefficient, horizontal restitution coefficient and ejection number were formulated, which will be used in future computer simulations of the snow drifting process.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号