首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
  国内免费   1篇
地球物理   2篇
地质学   4篇
天文学   1篇
  2020年   1篇
  2017年   1篇
  2010年   1篇
  2009年   1篇
  2008年   2篇
  1996年   1篇
排序方式: 共有7条查询结果,搜索用时 46 毫秒
1
1.
The EH and EL enstatite chondrites are the most reduced chondrite groups, having formed in nebular regions where the gas may have had high C/O and/or pH2/pH2O ratios. Enstatite chondrites (particularly EH) have higher CI- and Mg-normalized abundances of halogens (especially F and Cl) and nitrogen than ordinary chondrites and most groups of carbonaceous chondrites. Even relative to CI chondrites, EH and EL chondrites are enriched in F. We have found that literature values for the halogen abundance ratios in EH and EL chondrites are strongly correlated with the electronegativities of the individual halogens. We suggest that the most reactive halogens were the most efficient at forming compounds (e.g., halides) that were incorporated into EH-chondrite precursor materials. It seems plausible that, under the more-oxidizing conditions pertaining to the other chondrite groups, a larger fraction of the halogens remained in the gas. Nitrogen may have been incorporated into the enstatite chondrites as simple nitrides that did not condense under the more-oxidizing conditions in the regions where other chondrite groups formed. Literature data show that unequilibrated enstatite chondrites have light bulk N (δ 15N ≈ −20‰) compared to most ordinary (−5 to +20‰) and carbonaceous (+20 to +190‰) chondrites; this may reflect the contribution in enstatite chondrites of nitride condensates with δ15 N values close to the proposed nebular mean (~−400‰). In contrast, N in carbonaceous chondrites is mainly contained within 15N-rich organic matter. The major carrier of N in ordinary chondrites is unknown.  相似文献   
2.
The Osborne iron oxide–copper–gold (IOCG) deposit is hosted by amphibolite facies metasedimentary rocks and associated with pegmatite sheets formed by anatexis during peak metamorphism. Eleven samples of ore-related hydrothermal quartz and two pegmatitic quartz–feldspar samples contain similarly complex fluid inclusion assemblages that include variably saline (<12–65 wt% salts) aqueous and liquid carbon dioxide varieties that are typical of IOCG mineralisation. The diverse fluid inclusion types present in each of these different samples have been investigated by neutron-activated noble gas analysis using a combination of semi-selective thermal and mechanical decrepitation techniques. Ore-related quartz contains aqueous and carbonic fluid inclusions that have similar 40Ar/36Ar values of between 300 and 2,200. The highest-salinity fluid inclusions (47–65 wt% salts) have calculated 36Ar concentrations of approximately 1–5 ppb, which are more variable than air-saturated water (ASW = 1.3–2.7 ppb). These fluid inclusions have extremely variable Br/Cl values of between 3.8 × 10−3 and 0.3 × 10−3, and I/Cl values of between 27 × 10−6 and 2.4 × 10−6 (all ratios are molar). Fluid inclusions in the two pegmatite samples have similar 40Ar/36Ar values of ≤1,700 and an overlapping range of Br/Cl and I/Cl values. High-salinity fluid inclusions in the pegmatite samples have 2.5–21 ppb 36Ar, that overlap the range determined for ore-related samples in only one case. The fluid inclusions in both sample groups have 84Kr/36Ar and 129Xe/36Ar ratios that are mainly in the range of air and air-saturated water and are similar to mid-crustal rocks and fluids from other settings. The uniformly low 40Ar/36Ar values (<2,200) and extremely variable Br/Cl and I/Cl values do not favour a singular or dominant fluid origin from basement- or mantle-derived magmatic fluids related to A-type magmatism. Instead, the data are compatible with the involvement of metamorphic fluids that have interacted with anatectic melts to variable extents. The ‘metamorphic’ fluids probably represent a mixture of (1) inherited sedimentary pore fluids and (2) locally derived metamorphic volatilisation products. The lowest Br/Cl and I/Cl values and the ultra-high salinities are most easily explained by the dissolution of evaporites. The data demonstrate that externally derived magmatic fluids are not a ubiquitous component of IOCG ore-forming systems, but are compatible with models in which IOCG mineralisation is localised at sites of mixing between fluids of different origin. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorised users.  相似文献   
3.
4.
Contamination of Hospital Wastewater with Hazardous Compounds as Defined by § 7a WHG In total, 45 samples of hospital wastewater obtained from different origins (total wastewater, nursing, and laboratories) were investigated using chemical analyses as well as biological testing methods. In parallel, the consumption of several product groups relevant to the wastewater has been calculated. The water consumption strongly influenced the quality of the corresponding wastewater. Most of the values of the chemical parameters determined were found within a range as would have been expected for municipal wastewater. The AOX concentrations were distinctly elevated (0.41 mg/L in total wastewater and 0.95 mg/L in nursing wastewater). As could be shown by the calculated consumption of different compounds, the iodoferous X-ray contrast media represented a predominant proportion of the total AOX load of the clinical wastewaters tested. The values of some of the total wastewater samples and the laboratory wastewater samples showed a high toxicity as determined using the daphnia and luminescent bacteria tests. Using Ames and hamster cell tests, 5 out of 23 samples in the clinical area and 7 out of 9 samples from the laboratories turned out to be mutagenic. The origin of this mutagenic potential could not be determined though.  相似文献   
5.
Magma degassing at Soufrière Hills Volcano (SHV) is characterised by an almost permanent SO2 flux and a HCl production rate which mainly depends on dome growth rate. Degassing processes have been studied through textural, H2O and halogen analyses of clasts collected between 1995 and 2006 on the dome and in pyroclastic flows and vulcanian eruption deposits. Cl, Br and I are strongly depleted in melts during H2O degassing with no significant Cl–Br–I fractionation, whereas F is almost unaffected. All magmas erupted at SHV have followed a multi-step degassing path from the magma chamber up to a shallow depth ( 1 km, P  20 MPa). From that depth, however, effusive and explosive paths are distinct; vulcanian eruptions are the result of closed system degassing (CSD), while effusive dome growth is the result of CSD up to a very shallow depth (≤ 200 m, P  5–2 MPa) followed by open system degassing (OSD). CSD is modelled using the H2O solubility law, the perfect gas law and partition coefficients of halogens between a rhyolitic melt and H2O vapour (dv − li). Gas loss characteristic of OSD is modelled using a Rayleigh law. Degassing induced crystallisation is introduced through the ratio of crystallisation and degassing rates, which ranges from 150–500. dv − lCl for OSD ranges between 50–300, increasing with melt Cl content. For CSD, the lower effective dv − lCl ( 20) is attributed to kinetic effects.

Dome forming activity has a greater impact on atmospheric chemistry than vulcanian eruptions because OSD is much more efficient at extracting halogens. The model shows that HCl flux is a good proxy for the dome forming eruption rate. Comparison between model and measured gas compositions suggests a high HBr–BrO conversion rate (BrO/Total Br  1/3) in the SHV gas plume.

The degassing behaviour of Cl, Br and I implies similar Cl/Br ( 160) and Br/I ( 90) in initial melts, volcanic clasts and high temperature gases. The low Cl/Br at SHV compared to other island arcs ( 250–300) is attributed to a shallow, pre-eruptive Br enrichment. The almost permanent dome extrusion at SHV since 1995 has likely had a significant regional atmospheric impact because of the very efficient effusive degassing and the high conversion rate of halogens into reactive species within the gas plume.  相似文献   

6.
滇西北衙金矿床磷灰石微量元素和卤素成分的地质意义   总被引:2,自引:2,他引:0  
王晨光  杨立强  和文言 《岩石学报》2017,33(7):2213-2224
滇西北衙斑岩金矿床是金沙江-哀牢山新生代富碱斑岩成矿带中规模最大的金多金属矿床,其已探明的金储量超过350t,伴生的铜、铅锌、铁、银、硫也达到大-中型规模,前人针对该矿床做了很多研究,但对于富碱斑岩与成岩成矿作用的关系一直存在较大的争议。本文以磷灰石为研究对象,比较北衙矿区内各岩体成矿差异,探讨磷灰石所记录的成岩成矿信息。研究表明,北衙矿区二长花岗斑岩成矿岩体与不成矿岩体的磷灰石均富F(2%)、贫Cl(0.02%),两者呈现近似的负相关;但成矿岩体中磷灰石具有相对较高的δEu值和较低的δCe值,表明成矿岩体氧化程度更高,从而减少含Fe硫化物的形成,使金属元素得以保存,在源区释放更多的Cu、Au元素,有利于成矿。同时,北衙矿区岩体磷灰石的(Sm/Yb)N比值的减小可能是由含Cl热液的出溶所导致的;与成矿岩体磷灰石相比,不成矿岩体磷灰石的低Ce/Pb和高Th/U值,反映了岩浆形成过程中不成矿岩体的流体活动性较弱,岩浆的分异不明显。对比研究显示,同为陆内碰撞环境形成的北衙矿床与成矿带北段玉龙矿床,其成矿岩体中磷灰石的F/Cl值明显高于俯冲环境中形成的普朗、春都和铜厂沟矿床的成矿岩体。  相似文献   
7.
卤族元素诸如氯和溴作为地球化学示踪剂,常用于指示岩浆、变质岩和热液的来源和演化过程。而认清溴在造岩矿物中的形态和结构有助于丰富和完善其在地质环境演变中的示踪作用。但是,溴在造岩矿物中的含量极低导致大多数结构分析方法都无法使用,因此造岩矿物中微量溴的结构研究极具挑战性。本文采用 81Br魔角旋转核磁共振(MAS NMR)光谱和同步辐射吸收光谱(XAS)技术,首次对富氯造岩矿物中的微量溴进行了结构分析。结果表明溴离子在方硼石中的微区结构不同于该矿物中三配位Cl原子的结构环境,而与Mg3B7O13Br中八面体配位的溴离子相似,表明即使在微量条件下也存在域偏析。而对其他富氯造岩矿物的Br K边X光吸收近边结构(XANES)光谱白线峰的位置和扩展X射线吸收精细结构(EXAFS)分析表明微量溴离子替代了这些矿物中氯的位置,导致局部结构扭曲膨胀。溴离子在造岩矿物中的这一微观结构研究结果可为探索氯和溴在地质演变过程的指示作用提供新的科学依据。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号