首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   0篇
天文学   17篇
  2008年   2篇
  2004年   1篇
  2003年   3篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1999年   3篇
  1998年   1篇
  1995年   4篇
排序方式: 共有17条查询结果,搜索用时 46 毫秒
1.
2.
3.
Large molecules in the envelope surrounding IRC+10216   总被引:1,自引:0,他引:1  
A new chemical model of the circumstellar envelope surrounding the carbon-rich star IRC+10216 is developed that includes carbon-containing molecules with up to 23 carbon atoms. The model consists of 3851 reactions involving 407 gas-phase species. Sizeable abundances of a variety of large molecules including carbon clusters, unsaturated hydrocarbons and cyanopolyynes have been calculated. Negative molecular ions of chemical formulae and C n H (7 n 23) exist in considerable abundance, with peak concentrations at distances from the central star somewhat greater than their neutral counterparts. The negative ions might be detected in radio emission, or even in the optical absorption of background field stars. The calculated radial distributions of the carbon-chain C n H radicals are looked at carefully and compared with interferometric observations.  相似文献   
4.
IRC +10420 is to date the only object that has been proposed to be in the transition from the Red Supergiant Phase to the Wolf-Rayet phase. In this contribution we report on new high resolution optical spectra of IRC +10420.  相似文献   
5.
We have updated the chemical model of IRC+10216 developed by Millar, Herbst & Bettens to include recent routes to the formation of sulphuretted hydrocarbons. The routes are based on a quantum chemical study of the S+C2H system. In addition, we have altered the parent species for sulphur to reflect new observational results. We find that the model calculations give excellent agreement with the observed column densities, and discuss the significance of these reactions to the formation of species as yet unobserved and to dark interstellar clouds.  相似文献   
6.
Our current understanding of the evolution of solar-type stars suggests that after a period as a red giant star, during which mass loss occurs continuously in the form of a stellar wind, a period of intense mass loss known as a superwind occurs, during which a significant fraction of the envelope of the star is ejected into space, forming the material from which a planetary nebula (PN) will be constructed. It has been suggested that this superwind ejects material from the star in a toroidal or disc-like fashion, rather than isotropically. Here we present Hubble Space Telescope optical images of a toroidal superwind caught in the act: our images of the carbon star IRC+10216, which is believed to be in the final stages of red giant evolution, show that most of its optical emission is a bipolar reflection nebula. We show that the full spectral energy distribution and these images can be modelled as an equatorially enhanced dusty superwind, providing the first direct observational support for the toroidal superwind model, and supporting the 'interacting winds' model of PN formation.  相似文献   
7.
Synthetic brightness profiles resulting from consistent dynamical models for circumstellar dust shells around long-period variables are presented and discussed with respect to a corresponding observation of IRC +10216.  相似文献   
8.
9.
10.
We employ quantum chemical calculations using the CBS-RAD ('Complete Basis Set – Radicals') technique on the C2N2H potential energy surface to show that the reaction of HNC with CN is a viable and plausible route to NCCN in cold astrophysical environments. We use detailed chemical kinetic models to predict the abundance of NCCN in TMC-1 and IRC+10216. Radio-astronomical detection of NCCN is precluded by its lack of a dipole moment. We discuss other prospects for its observation in interstellar and circumstellar environments, by space-borne infrared spectroscopy, indirectly by detection of the NCCNH+ ion, or inferentially by detection of its higher-energy, polar isomer CNCN.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号