首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
天文学   4篇
  1994年   2篇
  1990年   2篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
2.
This paper is an attempt to bring unity in the study of the classical Kepler problem by combining, through simple vectorial and quaternionic techniques, its two peculiar aspects: the determination of the constants of the motion and the regularization at the origin.Research supported by the Consiglio Nazionale delle Ricerche of Italy (C.N.R.-G.N.F.M.).  相似文献   
3.
A review is presented of the author's results on application of regularizing and stabilizing KS- transformation in the problem of investigation of the motion of unusual minor planets and comets. Two models of the motion of a minor body are considered, viz. the perturbed two body problem and the perturbed restricted three body problem. The variational equations in KS-variables and transformations for obtaining the matrix of partial derivatives of the instantaneous physical parameters of motion with respect to their initial values are presented. The peculiarities of the implementation of the algorithms developed as programs on a computer are described. The original results of the investigation of the efficiency of the developed algorithms and programs are discussed using as an example the motion of unusual minor planets Icarus and Geographos as well as comets Halley, Honda-Mrkos-Pajdusakova and Gehrels 3.  相似文献   
4.
The method for processing perturbed Keplerian systems known today as the linearization was already known in the XVIIIth century; Laplace seems to be the first to have codified it. We reorganize the classical material around the Theorem of the Moving Frame. Concerning Stiefel's own contribution to the question, on the one hand, we abandon the formalism of Matrix Theory to proceed exclusively in the context of quaternion algebra; on the other hand, we explain how, in the hierarchy of hypercomplex systems, both the KS-transformation and the classical projective decomposition emanate by doubling from the Levi-Civita transformation. We propose three ways of stretching out the projective factoring into four-dimensional coordinate transformations, and offer for each of them a canonical extension into the moment space. One of them is due to Ferrándiz; we prove it to be none other than the extension of Burdet's focal transformation by Liouville's technique. In the course of constructing the other two, we examine the complementarity between two classical methods for transforming Hamiltonian systems, on the one hand, Stiefel's method for raising the dimensions of a system by means of weakly canonical extensions, on the other, Liouville's technique of lowering dimensions through a Reduction induced by ignoration of variables.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号