首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
  国内免费   3篇
地质学   12篇
海洋学   2篇
天文学   1篇
自然地理   1篇
  2019年   1篇
  2011年   2篇
  2009年   7篇
  2008年   1篇
  2006年   2篇
  2005年   2篇
  2003年   1篇
排序方式: 共有16条查询结果,搜索用时 15 毫秒
1.
贵州台江五河剖面灯影组顶部微体动物化石   总被引:2,自引:0,他引:2  
杨瑞东  钱逸 《地质科学》2005,40(1):40-46
贵州台江灯影组白云岩中发现了30~70μm的锥形微体动物化石,它们具有典型的锥管状、似几丁质壳壁和平行纤维结构等生物结构,可能分属软体动物CarinachitidsArthrochitesPunctatusSpondylotubus和似几丁虫类化石等5种类型。其中建立了一新属、种Spondylotubus taijiangensis Yang(gen.etsp.nov.)。在灯影组白云岩中这一类群的发现对研究前寒武纪寒武纪界线附近生物的多样性和生物地层,以及寒武纪生物大爆发都具有一定的科学意义。  相似文献   
2.
中更新世气候转型时期南海生态环境的南北差异   总被引:2,自引:0,他引:2  
中更新世气候转型在南海浮游有孔虫、氧同位素和其它生物记录上主要反映在900 ka BP前后发生高频率变化,特别是指示表层水骤然降温。北部冬季表层水温从24~25℃降至17~28℃,而南部也从26~27℃降至23~24℃。总的降温趋势与开放西太平洋一致,直接反映了西太平洋暖池在900 ka BP之后MIS22期间有明显的减弱。表层水大幅度降温还发生在后继的MIS 20、18、16几大冰期,说明主要冰期旋回周期由41 ka转变为100 ka经历了长达400 ka的过渡时期,并且冬季风增强也在过渡时期的后半段最明显。南海南北生物组合和δ18O值的差异,突出了中更新世气候转型期边缘海区南北气候梯度反差和冬季风在冰期增强的讯号。结论是:生态环境系统反应总体表现与冰期旋回一致的同时,还包含了独特的地区性系统演变特征。但是,南海—西太平洋地区在0.9 Ma BP前后表层海水盐度因东亚冬季风和海平面下降的定量变化,以及这些变化对气候转型时期海—气耦合过程和生态环境系统的影响,尚缺乏足够的资料和证据。  相似文献   
3.
The preservation of the organic-walled microbiota of the Lakhanda Lagerstätte in the Kumakha mudstone succession of the late Mesoproterozoic Lakhanda Group (Uchur-Maya region, southeast Siberia) is a result of unusually favorable paleoecologic, taphonomic, and diagenetic conditions. Well known for its marked taxonomic diversity and exquisite preservation, the biota inhabited a warm, shallow, epicontinental basin rich in nutrients into which were dispersed clay minerals, from weathering of continental crust, and minor amounts of volcanic detritus. The fossils were preserved by compression in fine-grained smectite–illite–kaolinite mudstones deposited in a sulfur-deficient disoxic and anoxic environment. Subsequently, the long-term (1 Ga) tectonic stability of the southeast margin of the Siberian platform has provided an exceptional environment for the preservation of the microfossil assemblage without significant diagenetic alteration. Conclusions drawn here from studies of the paleoecology, taphonomy, and diagenesis of the Lakhanda Lagerstätte may provide a globally useful model in the search for additional evidence of the Precambrian rise to dominance of eukaryotes in the Earth's biosphere.  相似文献   
4.
This paper investigates the stability of an automatic system for classifying kerogen material from images of sieved rock samples. The system comprises four stages: image acquisition, background removal, segmentation, and classification of the segmented kerogen pieces as either inertinite or vitrinite. Depending upon a segmentation parameter d, called “overlap”, touching pieces of kerogen may be split differently. The aim of this study is to establish how robust the classification result is to variations of the segmentation parameter. There are two issues that pose difficulties in carrying out an experiment. First, even a trained professional may be uncertain when distinguishing between isolated pieces of inertinite and vitrinite, extracted from transmitted-light microscope images. Second, because manual labelling of large amount of data for training the system is an arduous task, we acquired the true labels (ground truth) only for the pieces obtained at overlap d=0.5. To construct ground truth for various values of d we propose here label-inheritance trees. With thus estimated ground truth, an experiment was carried out to evaluate the robustness of the system to changes in the segmentation through varying the overlap value d. The average system accuracy across values of d spanning the range from 0 to 1 was 86.5%, which is only slightly lower than the accuracy of the system at the design value of d=0.5 (89.07%).  相似文献   
5.
The ecological implications of a Yakutian mammoth's last meal   总被引:1,自引:0,他引:1  
Part of a large male woolly mammoth (Mammuthus primigenius) was preserved in permafrost in northern Yakutia. It was radiocarbon dated to ca. 18,500 14C yr BP (ca. 22,500 cal yr BP). Dung from the lower intestine was subjected to a multiproxy array of microscopic, chemical, and molecular techniques to reconstruct the diet, the season of death, and the paleoenvironment. Pollen and plant macro-remains showed that grasses and sedges were the main food, with considerable amounts of dwarf willow twigs and a variety of herbs and mosses. Analyses of 110-bp fragments of the plastid rbcL gene amplified from DNA and of organic compounds supplemented the microscopic identifications. Fruit-bodies of dung-inhabiting Ascomycete fungi which develop after at least one week of exposure to air were found inside the intestine. Therefore the mammoth had eaten dung. It was probably mammoth dung as no bile acids were detected among the fecal biomarkers analysed. The plant assemblage and the presence of the first spring vessels of terminal tree-rings of dwarf willows indicated that the animal died in early spring. The mammoth lived in extensive cold treeless grassland vegetation interspersed with wetter, more productive meadows. The study demonstrated the paleoecological potential of several biochemical analytical techniques.  相似文献   
6.
Demonstrating the biogenicity of presumptive microfossils in the geological record often requires supporting chemical signatures, including isotopic signatures. Understanding the mechanisms that promote the preservation of microbial biosignatures associated with microfossils is fundamental to unravelling the palaeomicrobiological history of the material. Organomineralization of microorganisms is likely to represent the first stages of microbial fossilisation and has been hypothesised to prevent the autolytic degradation of microbial cell envelope structures. In the present study, two distinct fossilisation textures(permineralised microfossils and iron oxide encrusted cell envelopes)identified throughout iron-rich rock samples were analysed using nanoscale secondary ion mass spectrometry(NanoSIMS). In this system, aluminium is enriched around the permineralised microfossils, while iron is enriched within the intracellularly, within distinct cell envelopes. Remarkably,while cell wall structures are indicated, carbon and nitrogen biosignatures are not preserved with permineralised microfossils. Therefore, the enrichment of aluminium, delineating these microfossils appears to have been critical to their structural preservation in this iron-rich environment. In contrast,NanoSIMS analysis of mineral encrusted cell envelopes reveals that preserved carbon and nitrogen biosignatures are associated with the cell envelope structures of these microfossils. Interestingly, iron is depleted in regions where carbon and nitrogen are preserved. In contrast aluminium appears to be slightly enriched in regions associated with remnant cell envelope structures. The correlation of aluminium with carbon and nitrogen biosignatures suggests the complexation of aluminium with preserved cell envelope structures before or immediately after cell death may have inactivated autolytic activity preventing the rapid breakdown of these organic, macromolecular structures.Combined, these results highlight that aluminium may play an important role in the preservation of microorganisms within the rock record.  相似文献   
7.
Microstructures recently reported from an Archaean sedimentary succession (ca. 3.0 Ga) in the Mount Goldsworthy–Mount Grant area in the northeastern Pilbara Craton meet the criteria for compelling evidence of biogenicity [Sugitani, K., Grey, K., Allwood, A., Nagaoka, T., Mimura, K., Minami, M., Marshall, C.P., Van Kranendonk, M.J., Walter, M.R., 2007. Diverse microstructures from Archaean chert from the Mount Goldsworthy–Mount Grant area, Pilbara Craton, Western Australia: microfossils, dubiofossil, or pseudofossils. Precambrian Res. 158, 228–262]. The structures are morphologically diverse. Although they were tentatively classified into five major morphological types (thread-like, film-like, small (<15 μm) and large (>15 μm) spheroidal, and spindle-like), the possible taxonomic significance of these groups was not discussed. Building on our earlier analysis, we focus on the morphology of the larger spheroids, as well as presenting further evidence relating spindles and several bizarre forms, and attempt to group them taxonomically and adduce additional evidence for their biogenicity.Taphonomic features were identified in each of the various morphological groups, but the range of morphological diversity of the spheroids cannot be attributed solely to taphonomic alteration. Four subdivisions of spheroids are proposed: (1) simple single-walled spheroids, (2) thin-walled spheroids having a diffuse envelope, (3) thick-walled spheroids, and (4) spheroids having an extensively folded wall. Simple single-walled spheroids, 15–60 μm in diameter, with various wall textures but commonly lacking envelopes or appendages form the dominant subgroup. Other complex morphologies are present and include aligned or associated bodies of thin-walled spheroids with diffuse envelopes, and spindle-like structures containing inner spheroidal bodies. The degree of morphological complexity and associations between structures suggest the presence of reproductive phases. If correct, this implies that the early Earth (ca. 3.0 Ga) showed a higher level of biodiversity than is currently postulated.  相似文献   
8.
G. Rajasekaran   《Ocean Engineering》2006,33(3-4):517-529
An attempt has been made to investigate the microfabric and mineralogical features of marine sediments collected from the north-east coastal region of Singapore. A limited laboratory studies on shear strength, consolidation and chemical analysis were carried out to examine the geotechnical characteristics of marine sediments. Emphasis has been focussed on the microfabric aspects of microfossils (diatom) and pyrite, and their influence on the soil properties. Test results indicated the predominant presence of microfossils (diatom) and pyrite, and their impact on the marine sediments behaviour has been discussed briefly. The abundant presence of microfossils results in an increase in strength, compressibility and hydraulic conductivity due to the presence of large voids between the skeleton structures.  相似文献   
9.
Within the context of present and future in situ missions to Mars to investigate its habitability and to search for traces of life, we studied the habitability and traces of past life in ∼3.5 Ga-old volcanic sands deposited in littoral environments an analogue to Noachian environments on Mars. The environmental conditions on Noachian Mars (4.1-3.7 Ga) and the Early Archaean (4.0-3.3 Ga) Earth were, in many respects, similar: presence of liquid water, dense CO2 atmosphere, availability of carbon and bio-essential elements, and availability of energy. For this reason, information contained in Early Archaean terrestrial rocks concerning habitable conditions (on a microbial scale) and traces of past life are of relevance in defining strategies to be used to identify past habitats and past life on Mars.One such example is the 3.446 Ga-old Kitty’s Gap Chert in the Pilbara Craton, NW. Australia. This formation consists of volcanic sediments deposited in a coastal mudflat environment and is thus a relevant analogue for sediments deposited in shallow water environments on Noachian Mars. Two main types of habitat are represented, a volcanic (lithic) habitat and planar stabilized sediment surfaces in sunlit shallow waters. The sediments hosted small (<1 μm in size) microorganisms that formed colonies on volcanic particle surfaces and in pore waters within the volcanic sediments, as well as biofilms on stabilised sediment surfaces. The microorganisms included coccoids, filaments and rare rod-shaped organisms associated with microbial polymer (EPS). The preserved microbial community was apparently dominated by chemotrophic organisms but some locally transported filaments and filamentous mat fragments indicate that possibly photosynthetic mats formed nearby. Both microorganisms and sediments were silicified during very early diagenesis.There are no macroscopic traces of fossilised life in these volcanic sediments and sophisticated instrumentation and specialized sample preparation techniques are required to establish the biogenicity and syngenicity of the traces of past life. The fact that the traces of life are cryptic, and the necessity of using sophisticated instrumentation, reinforces the challenges and difficulties of in situ robotic missions to identify past life on Mars. We therefore recommend the return of samples from Mars to Earth for a definitive search for traces of life.  相似文献   
10.
In this paper, we present an integrated study of the macrofauna (Cephalopoda), microfauna (Ostracoda and Foraminifera), microflora (Pithonella, Dinoflagellata, Acritarcha and Prasinophyta) and geochemical signals (carbon δ13C and oxygen δ18O stable isotopes) of the upper Cenomanian and lower Turonian succession in Puentedey, Iberian Trough, Spain. This palaeontological and geochemical study has enabled us to identify numerous species of cephalopods (29), ostracods (19), benthic foraminifers (31), planktonic foraminifers (15), dinoflagellates (63), and acritarchs and prasinophytes (11), and to recognise two positive excursions of the δ13C signal related to the OAE2 (in the Metoicoceras geslinianum and the Spathites (Jeanrogericeras) subconciliatus zones, respectively). Variations of these macrofaunal, microfaunal, microfloral and geochemical signals have been interpreted to identify important events of the palaeoenvironmental evolution of the inner platform of the Iberian Trough during the studied interval of the Late Cretaceous. Benthic ecosystems were severely affected by the establishment of the Oceanic Anoxic Event 2 (OAE2) at the end of the late Cenomanian. This event is evidenced by the depletion of calcareous microfauna (benthic calcareous free intervals, BCFI) and the survival of opportunistic microfauna (platycopic ostracods and textulariid foraminifers). The response was different for microflora (dinoflagellates and acritarchs), which were less affected by the anoxic event.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号