首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
天文学   2篇
  2008年   1篇
  2007年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
We have developed an exceptionally noise-resistant method for accurate and automatic identification of supergranular cell boundaries from velocity measurements. Because of its high noise tolerance the algorithm can produce reliable cell patterns with only very small amounts of smoothing of the source data in comparison to conventional methods. In this paper we describe the method and test it with simulated data. We then apply it to the analysis of velocity fields derived from high-resolution continuum data from MDI (Michelson Doppler Imager) on SOHO. From this, we can identify with high spatial resolution certain basic properties of supergranulation cells, such as their characteristic sizes, the flow speeds within cells, and their dependence on cell areas. The effect of the noise and smoothing on the derived cell boundaries is investigated and quantified by using simulated data. We show in detail the evolution of supergranular cells over their lifetime, including observations of emerging, splitting, and coalescing cells. A key result of our analysis of cell internal velocities is that there is a simple linear relation between cell size and cell internal velocity, rather than the power law usually suggested. Electronic Supplementary Material The online version of this article () contains supplementary material, which is available to authorized users.  相似文献   
2.
Thermal convection in a horizontal fluid layer heated from below and rotating about an arbitrary axis is studied analytically with the attention focused on mean flows and drifts generated by the convection velocity field. Mean flows occur in both horizontal directions when the angle between the rotation vector and the vertical is finite but less than 90°. In the case of a hexagonal convection pattern, a wavelike drift is found in the presence of a horizontal component of rotation. Applications to solar convection are discussed. Considering the simplicity of the model the agreement with observations is surprisingly good.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号