首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
天文学   5篇
  2009年   1篇
  2007年   2篇
  2003年   2篇
排序方式: 共有5条查询结果,搜索用时 125 毫秒
1
1.
Variability on time scales δt < t is observed on numerous occasions in the afterglows of cosmic gamma-ray bursts (GRBs). It is well known that the radiation originating in an external shock produced by the interaction of an ultrarelativistic jet with the ambient interstellar medium should not contain such variability within the framework of simple models. The corresponding constraints were established by Ioka et al. (2005) and, in some instances, are inconsistent with observations. On the other hand, if the motion is not relativistic, then the rapid afterglow variability can be explained much more easily. Various estimates of the transition time to a nonrelativistic motion in a GRB source are discussed in this connection. It has been shown that this transition should occur on an observed time scale of ~10 days. In the case of a higher density of the surrounding material, ~102?104 cm?3, or a stellar wind with ? ~ 10?5?10?4 M yr?1, the transition to a nonrelativistic motion can occur on a time scale of ~1 day. Such densities may well be expected in star-forming regions and around massive Wolf-Rayet stars.  相似文献   
2.
Observational parameters of the optical and gamma-ray emissions from 58 gamma-ray bursts (GRBs) with discovered afterglows and known redshifts are analyzed. The distributions of these parameters and pair correlations between them are studied. Approximately half of the objects exhibit a relatively slow decrease in the optical flux at initial afterglow phases (with a power-law index in the decay law α < 1). Correlations have been found between the luminosities, energies, and durations of the optical and gamma-ray emissions, which can be explained by the presence of universal features in the light curves. A correlation of the peak luminosity for afterglows with the redshift and an anticorrelation of their durations with the redshift have been found for the first time. Against the background of a weak z dependence of the total afterglow energy, this effect can be explained by cosmological evolution of the GRB environment, which determines the rate of optical energy release.  相似文献   
3.
We describe the first results of our observations of the exceptionally bright optical afterglow from the cosmic gamma-ray burst (GRB) of March 29, 2003 (030329), with the 1.5-m Russian-Turkish telescope (RTT150) installed at the TUBITAK National Observatory (Turkey) at Mount Bakyrlytepe. RTT150 was one of the first medium-class telescopes pointed at the afterglow. The observations began as early as about six hours after the GRB. During the first five hours of our observations, the BV RI flux fell off exactly as a power law with the same slope ?1.19±0.01. Subsequently, in all of the BV RI bands, we observed the same increase in the power-law slope of the light curve to a value that was later recorded during the observations at observatories in the western hemisphere. The break in the power-law light curve occurs at t ? t 0 ≈ 0.57 days (13.5 h) and lasts for about 0.2 days. Apart from this smooth decrease in the flux, the afterglow exhibited no flux variability. The upper limits on the variability are 10–1% on time scales of 0.1–1000 s, respectively. The BV RI spectral flux distribution during the first night of our observations closely corresponds to a power-law spectrum with a spectral index α=0.66±0.01. The change in the power-law slope of the light curve at the end of our observations is probably attributable to the deceleration of the ultrarelativistic jet to a gamma factor when its structural features begin to show up in the light curve. The radio, optical, and X-ray broadband spectrum is consistent with the assumption about the synchrotron radiation of the ultrarelativistic jet. This unique object continues to be observed with RTT150.  相似文献   
4.
Multicolor photometric observations of the optical afterglow from GRB 060526 with the Russian-Turkish 1.5-m RTT-150 telescope (Mount Bakyrlytepe, Turkey) are presented. The afterglow light curve was measured in detail starting from about 5 h after the GRB and over five ensuing nights. In addition, upper limits were obtained on the rapid variability of the afterglow on the first night of observations and the history of afterglow color variations was measured in detail. In the time interval from 6 to 16 h after the burst, the flux gradually decreased approximately as a power law with a slope of ?1.14 ± 0.02. Subsequently, variability was observed on a time scale δt < t and the afterglow began to decay much faster. The afterglow color was approximately constant (V?R ≈ 0.5) throughout the observations, despite the flux variability. Variability time scales up to δt/t ≈ 0.0055 were observed at ΔF ν/F ν ≈ 0.3, which violates many constraints on the variability of the observed emission from an ultrarelativistic jet obtained by Ioka et al. (2005). We suggest explaining this variability by the fact that the shell motion is no longer ultrarelativistic at this time.  相似文献   
5.
用中心有脉冲星的γ射线暴的火球模型计算出GRB970228和GRB000301c两个γ射线暴的余辉辐射流,计算结果与观测结果相比较,符合的很好,解释了GRB970228和GRB000301c光学R波段余辉的光变曲线带‘拐折’的特征,讨论了中心脉冲星参数的取值对余辉的光曲线起的重要作用。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号