首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   484篇
  免费   29篇
  国内免费   14篇
测绘学   4篇
大气科学   1篇
地球物理   19篇
地质学   77篇
海洋学   2篇
天文学   422篇
自然地理   2篇
  2024年   3篇
  2023年   6篇
  2022年   9篇
  2021年   9篇
  2020年   7篇
  2019年   8篇
  2016年   5篇
  2015年   12篇
  2014年   27篇
  2013年   9篇
  2012年   19篇
  2011年   16篇
  2010年   8篇
  2009年   37篇
  2008年   21篇
  2007年   43篇
  2006年   30篇
  2005年   49篇
  2004年   33篇
  2003年   20篇
  2002年   28篇
  2001年   15篇
  2000年   28篇
  1999年   13篇
  1998年   9篇
  1997年   6篇
  1996年   3篇
  1995年   13篇
  1994年   10篇
  1993年   9篇
  1992年   5篇
  1991年   2篇
  1990年   4篇
  1989年   1篇
  1988年   2篇
  1987年   2篇
  1986年   2篇
  1985年   1篇
  1984年   2篇
  1980年   1篇
排序方式: 共有527条查询结果,搜索用时 15 毫秒
1.
The Max-Planck-Institut für extraterrestrische Physik (MPE) in Garching, Germany, uses its large X-ray beam line facility PANTER for testing X-ray astronomical instrumentation. A number of telescopes, gratings, filters, and detectors, e.g. for astronomical satellite missions like Exosat, ROSAT, Chandra (LETG), BeppoSAX, SOHO (CDS), XMM-Newton, ABRIXAS, Swift (XRT), have been successfully calibrated in the soft X-ray energy range (< 15keV). Moreover, measurements with mirror test samples for new missions like ROSITA and XEUS have been carried out at PANTER. Here we report on an extension of the energy range, enabling calibrations of hard X-ray optics over the energy range 15–50 keV. Several future X-ray astronomy missions (e.g., Simbol-X, Constellation-X, XEUS) have been proposed, which make use of hard X-ray optics based on multilayer coatings. Such optics are currently being developed by the Osservatorio Astronomico di Brera (OAB), Milano, Italy, and the Harvard-Smithsonian Center for Astrophysics (CfA), Cambridge, MA, USA. These optics have been tested at the PANTER facility with a broad energy band beam (up to 50 keV) using the XMM-Newton EPIC-pn flight spare CCD camera with its good intrinsic energy resolution, and also with monochromatic X-rays between C-K (0.277 keV) and Cu-Kα (8.04 keV). PACS: 95.55.Ka, 95.55.Aq, 41 50.+h, 07.85.Fv  相似文献   
2.
A remarkable number of pulsar wind nebulae (PWN) are coincident with EGRET γ-ray sources. X-ray and radio imaging studies of unidentified EGRET sources have resulted in the discovery of at least six new pulsar wind nebulae (PWN). Stationary PWN (SPWN) appear to be associated with steady EGRET sources with hard spectra, typical for γ-ray pulsars. Their toroidal morphologies can help determine the geometry of the pulsar which is useful for constraining models of pulsed γ-ray emission. Rapidly moving PWN (RPWN) with more cometary morphologies seem to be associated with variable EGRET sources in regions where the ambient medium is dense compared to what is typical for the ISM.  相似文献   
3.
We consider temporal, spectral, and polarization parameters of the hard X-ray and gamma-ray radiation observed during the solar flare of May 20, 2002, in the course of experiments with the SONG and SPR-N instruments onboard the Coronas-F spacecraft. This flare is one of the most intense gamma-ray events among all of the bursts of solar hard electromagnetic radiation detected since the beginning of the Coronas-F operation (since July 31, 2001) and one of the few gamma-ray events observed during solar cycle 23. A simultaneous analysis of the Coronas-F and GOES data on solar thermal X-ray radiation suggests that, apart from heating due to currents of matter in the the flare region, impulsive heating due to the injection of energetic electrons took place during the near-limb flare S21E65 of May 20, 2002. These electrons produced intense hard X-ray and gamma-ray radiation. The spectrum of this radiation extends up to energies ≥7 MeV. Intense gamma-ray lines are virtually unobservable against the background of the nonthermal continuum. The polarization of the hard X-ray (20–100 keV) radiation was estimated to be ≤15–20%. No significant increase in the flux of energetic protons from the flare under consideration was found. At the same time, according to ACE data, the fluxes of energetic electrons in interplanetary space increased shortly (~25 min) after the flare.  相似文献   
4.
We describe measurements of the mirror vignetting in the XMM-Newton Observatory made in-orbit, using observations of SNR G21.5-09 and SNR 3C58 with the EPIC imaging cameras. The instrument features that complicate these measurements are briefly described. We show the spatial and energy dependences of measured vignetting, outlining assumptions made in deriving the eventual agreement between simulation and measurement. Alternate methods to confirm these are described, including an assessment of source elongation with off-axis angle, the surface brightness distribution of the diffuse X-ray background, and the consistency of Coma cluster emission at different position angles. A synthesis of these measurements leads to a change in the XMM calibration data base, for the optical axis of two of the three telescopes, by in excess of 1 arcmin. This has a small but measureable effect on the assumed spectral responses of the cameras for on-axis targets. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
5.
We report on our statistical research of space–time correlated supernovae and CGRO-BATSE gamma-ray bursts (GRBs). There exists a significantly higher abundance of core-collapse supernovae among the correlated supernovae, but the subset of all correlated objects does not seem to be physically different from the whole set.  相似文献   
6.
The absolute magnitudeM v of the hydrogen deficient binary υ Sgr has been estimated as -4.8 ± 1.0 from the distribution of the interstellar reddening, polarization and interstellar lines of the surrounding stars. From the ANS observations obtained at the time of the secondary eclipse, it appears that the hotter secondary is surrounded by a disc with colours of a B8-B9 star. The λ 1550 CIv absorption line arising in the stellar wind does not show any change in strength during the secondary minimum. The upper limit to the mass-loss rate from the high temperature wind is estimated as ≤ 5 × 10-7 M⊙ yr-1 from the 2 cm and 6 cm radio observations. Based on observations obtained with the Astronomical Netherlands Satellite and VLA. The National Radio Astronomy Observatory’s Very Large Array at Socorro, New Mexico is operated by Associated Universities Inc. under contract with the National Science Foundation.  相似文献   
7.
We present the new solar radiospectrograph of the University of Athensoperating at the Thermopylae Station since 1996. Observations cover thefrequency range from 110 to 688 MHz. The radiospectrograph has a 7-meterparabolic antenna and two receivers operating in parallel. One is a sweepfrequency receiver and the other a multichannel acousto-optical receiver.The data acquisition system consists of a front-end VME based subsystem anda Sun Sparc-5 workstation connected through Ethernet. The two subsystems areoperated using the VxWorks real-time package. The daily operation is fullyautomated: pointing of the antenna to the sun, starting and stopping theobservations at pre-set times, data acquisition, data compression by`silence suppression', and archiving on DAT tapes. The instrument can beused either by itself to study the onset and evolution of solar radio bursts or in conjunction with other instruments including theNançay Decametric Array and the WIND/WAVES RAD1 and RAD2 low frequencyreceivers to study associated interplanetary phenomena.  相似文献   
8.
An analysis of our observations of the Geminga object with the GT-48 ground-based gamma-ray telescope has shown that its very-high-energy gamma-ray flux is modulated with a 59-s period. The 59-s period and its time derivative previously inferred from satellite data have been confirmed. According to our data, the period was 61.94 s in 1997 at MSD=50573. The statistical significance of this result is (1?4.5)×10?4.  相似文献   
9.
This paper develops a compensation algorithm based on Linear–Quadratic–Gaussian (LQG) control system design whose parameters are determined (in part) by a model of the atmosphere. The model for the atmosphere is based on the open-loop statistics of the atmosphere as observed by the wavefront sensor, and is identified from these using an auto-regressive, moving average (ARMA) model. The (LQG) control design is compared with an existing compensation algorithm for a simulation developed at ESO that represents the operation of MACAO adaptive optics system on the 8.2 m telescopes at Paranal, Chile. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号