首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
地球物理   1篇
综合类   1篇
  2014年   1篇
  2011年   1篇
排序方式: 共有2条查询结果,搜索用时 187 毫秒
1
1.
The local geology and shallow S-wave velocity structure of a site are recognized to be key factors for the increase in the damaging potential of seismic waves. Indeed, seismic amplitudes may be amplified in frequency ranges unfavorable for building stock by the presence of soft sedimentary covers over lying hard bedrock. Hence, microzonation activities, which aim at assessing the site response as accurately as possible, have become a fundamental task for the seismic risk reduction of urbanized areas. Methods based on the measurement of seismic noise, which typically are fast, non-invasive, and low cost, have become a very attractive option in microzonation studies.Using observations derived from seismic noise recordings collected by two-dimensional arrays of seismic stations, we present a novel joint inversion scheme for surface wave curves. In particular, the Love wave, the Rayleigh wave dispersion and the HVSR curves are innovatively combined in a joint inversion procedure carried out following a global search approach (i.e., the Genetic Algorithm).The procedure is tested using a data set of seismic noise recordings collected at the Bevagna (Italy) test-site. The results of the novel inversion scheme are compared with the inversion scheme proposed by Parolai et al. (2005), where only Rayleigh wave dispersion and HVSR curves are used, and with a cross-hole survey.  相似文献   
2.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号