首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1772篇
  免费   204篇
  国内免费   402篇
测绘学   36篇
大气科学   117篇
地球物理   281篇
地质学   1364篇
海洋学   165篇
天文学   20篇
综合类   24篇
自然地理   371篇
  2024年   16篇
  2023年   25篇
  2022年   53篇
  2021年   63篇
  2020年   100篇
  2019年   95篇
  2018年   69篇
  2017年   100篇
  2016年   84篇
  2015年   98篇
  2014年   109篇
  2013年   134篇
  2012年   100篇
  2011年   89篇
  2010年   67篇
  2009年   103篇
  2008年   133篇
  2007年   126篇
  2006年   110篇
  2005年   104篇
  2004年   72篇
  2003年   74篇
  2002年   50篇
  2001年   38篇
  2000年   51篇
  1999年   47篇
  1998年   40篇
  1997年   29篇
  1996年   30篇
  1995年   25篇
  1994年   24篇
  1993年   17篇
  1992年   16篇
  1991年   14篇
  1990年   17篇
  1989年   7篇
  1988年   9篇
  1987年   9篇
  1986年   4篇
  1985年   8篇
  1984年   6篇
  1983年   4篇
  1982年   2篇
  1981年   1篇
  1980年   3篇
  1978年   1篇
  1977年   1篇
  1954年   1篇
排序方式: 共有2378条查询结果,搜索用时 46 毫秒
1.
2.
The elm decline of 5000 14C yr ago has been the most widely discussed phenomenon in post‐glacial vegetation history. This pan‐European reduction of elm populations, echoed in the decimation of elmwoods in Europe during the twentieth century, has attracted a series of interrelated hypotheses involving climate change, human activity, disease and soil deterioration. The elm bark beetle (Scolytus scolytus L.) is an essential component of disease explanations. We present evidence for the presence of the beetle over a prolonged period (ca. 7950–4910 yr BP [8800–5660 cal. yr BP]) from a lowland raised mire deposit in northeast Scotland, with its final appearance at this site, and the first and only appearance in another mire of a single scolytid find, around the time of the elm decline. The subfossil S. scolytus finds are not only the first from Scotland, but they also represent the most comprehensive sequence of finds anywhere. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
3.
针对信息系统安全的考虑,介绍在PowerBuilder环境中对用户权限的具体控制.  相似文献   
4.
A growing body of evidence implies that the concept of 'treeless tundra' in eastern and northern Europe fails to explain the rapidity of Lateglacial and postglacial tree population dynamics of the region, yet the knowledge of the geographic locations and shifting of tree populations is fragmentary. Pollen, stomata and plant macrofossil stratigraphies from Lake Kurjanovas in the poorly studied eastern Baltic region provide improved knowledge of ranges of north‐eastern European trees during the Lateglacial and subsequent plant population responses to the abrupt climatic changes of the Lateglacial/Holocene transition. The results prove the Lateglacial presence of tree populations (Betula, Pinus and Picea) in the eastern Baltic region. Particularly relevant is the stomatal and plant macrofossil evidence showing the local presence of reproductive Picea populations during the Younger Dryas stadial at 12 900–11 700 cal. a BP, occurring along with Dryas octopetala and arctic herbs, indicating semi‐open vegetation. The spread of PinusBetula forest at ca. 14 400 cal. a BP, the rise of Picea at ca. 12 800 cal. a BP and the re‐establishment of PinusBetula forest at ca. 11 700 cal. a BP within a span of centuries further suggest strikingly rapid, climate‐driven ecosystem changes rather than gradual plant succession on a newly deglaciated land. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
5.
A palaeotemperature reconstruction based on periglacial phenomena in Europe north of approximately 51 °N, is compared with high‐resolution regional climate model simulations of the marine oxygen isotope Stage 3 (Stage 3) palaeoclimate. The experiments represent Stage 3 warm (interstadial), Stage 3 cold (stadial) and Last Glacial Maximum climatic conditions. The palaeotemperature reconstruction deviates considerably for the Stage 3 cold climate experiments, with mismatches up to 11 °C for the mean annual air temperature and up to 15 °C for the winter temperature. However, in this reconstruction various factors linking climate and permafrost have not been taken into account. In particular a relatively thin snow cover and high climatic variability of the glacial climate could have influenced temperature limits for ice‐wedge growth. Based on modelling the 0 °C mean annual ground temperature proves to be an appropriate upper temperature limit. Using this limit, mismatches with the Stage 3 cold climate experiments have been reduced but still remain. We therefore assume that the Stage 3 ice wedges were generated during short (decadal time‐scale) intervals of extreme cold climate, below the mean temperatures indicated by the Stage 3 cold climate model simulations. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
6.
The southwest monsoon that dominated Central Himalaya has preserved loessic silt deposits preserved in patches that are proximal to periglacial areas. The occurrence of such silts suggests contemporary prevalence of cold and dry northwesterly winds. Field stratigraphy, geochemistry, mineral magnetism, infrared stimulated luminescence (IRSL) and radiocarbon dating has enabled reconstruction of an event chronology during the past 20 ka. Three events of loess accretion could be identified. The first two events of loess deposition occurred betweem 20 and 9 ka and were separated by a phase of moderate weathering. Pedogenesis at the end of this event gave rise to a well‐developed soil that was bracketed around 9 to > 4 ka. This was followed by the third phase of loess accretion that occurred around 4 to > 1 ka. Episodes of loess deposition and soil formation are interpreted in terms of changes in the strength of the Indian southwest monsoon. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
7.
We present a detailed, new time scale for an orogenic cycle (oceanic accretion–subduction–collision) that provides significant insights into Paleozoic continental growth processes in the southeastern segment of the long-lived Central Asian Orogenic Belt (CAOB). The most prominent tectonic feature in Inner Mongolia is the association of paired orogens. A southern orogen forms a typical arc-trench complex, in which a supra-subduction zone ophiolite records successive phases during its life cycle: birth (ca. 497–477 Ma), when the ocean floor of the ophiolite was formed; (2) youth (ca. 473–470 Ma), characterized by mantle wedge magmatism; (3) shortly after maturity (ca. 461–450 Ma), high-Mg adakite and adakite were produced by slab melting and subsequent interaction of the melt with the mantle wedge; (4) death, caused by subduction of a ridge crest (ca. 451–434 Ma) and by ridge collision with the ophiolite (ca. 428–423 Ma). The evolution of the magmatic arc exhibits three major coherent phases: arc volcanism (ca. 488–444 Ma); adakite plutonism (ca. 448–438 Ma) and collision (ca. 419–415 Ma) of the arc with a passive continental margin. The northern orogen, a product of ridge-trench interaction, evolved progressively from coeval generation of near-trench plutons (ca. 498–461 Ma) and juvenile arc crust (ca. 484–469 Ma), to ridge subduction (ca. 440–434 Ma), microcontinent accretion (ca. 430–420 Ma), and finally to forearc formation. The paired orogens followed a consistent progression from ocean floor subduction/arc formation (ca. 500–438 Ma), ridge subduction (ca. 451–434 Ma) to microcontinent accretion/collision (ca. 430–415 Ma); ridge subduction records the turning point that transformed oceanic lithosphere into continental crust. The recognition of this orogenic cycle followed by Permian–early Triassic terminal collision of the CAOB provides compelling evidence for episodic continental growth.  相似文献   
8.
The Anarak, Jandaq and Posht-e-Badam metamorphic complexes occupy the NW part of the Central-East Iranian Microcontinent and are juxtaposed with the Great Kavir block and Sanandaj-Sirjan zone. Our recent findings redefine the origin of these complexes, so far attributed to the Precambrian–Early Paleozoic orogenic episodes, and now directly related to the tectonic evolution of the Paleo-Tethys Ocean. This tectonic evolution was initiated by Late Ordovician–Early Devonian rifting events and terminated in the Triassic by the Eocimmerian collision event due to the docking of the Cimmerian blocks with the Asiatic Turan block.

The “Variscan accretionary complex” is a new name we proposed for the most widely distributed metamorphic rocks connected to the Anarak and Jandaq complexes. This accretionary complex exposed from SW of Jandaq to the Anarak and Kabudan areas is a thick and fine grain siliciclastic sequence accompanied by marginal-sea ophiolitic remnants, including gabbro-basalts with a supra-subduction-geochemical signature. New 40Ar/39Ar ages are obtained as 333–320 Ma for the metamorphism of this sequence under greenschist to amphibolite facies. Moreover, the limy intercalations in the volcano-sedimentary part of this complex in Godar-e-Siah yielded Upper Devonian–Tournaisian conodonts. The northeastern part of this complex in the Jandaq area was intruded by 215 ± 15 Ma arc to collisional granite and pegmatites dated by ID-TIMS and its metamorphic rocks are characterized by some 40Ar/39Ar radiometric ages of 163–156 Ma.

The “Variscan” accretionary complex was northwardly accreted to the Airekan granitic terrane dated at 549 ± 15 Ma. Later, from the Late Carboniferous to Triassic, huge amounts of oceanic material were accreted to its southern side and penetrated by several seamounts such as the Anarak and Kabudan. This new period of accretion is supported by the 280–230 Ma 40Ar/39Ar ages for the Anarak mild high-pressure metamorphic rocks and a 262 Ma U–Pb age for the trondhjemite–rhyolite association of that area. The Triassic Bayazeh flysch filled the foreland basin during the final closure of the Paleo-Tethys Ocean and was partly deposited and/or thrusted onto the Cimmerian Yazd block.

The Paleo-Tethys magmatic arc products have been well-preserved in the Late Devonian–Carboniferous Godar-e-Siah intra-arc deposits and the Triassic Nakhlak fore-arc succession. On the passive margin of the Cimmerian block, in the Yazd region, the nearly continuous Upper Paleozoic platform-type deposition was totally interrupted during the Middle to Late Triassic. Local erosion, down to Lower Paleozoic levels, may be related to flexural bulge erosion. The platform was finally unconformably covered by Liassic continental molassic deposits of the Shemshak.

One of the extensional periods related to Neo-Tethyan back-arc rifting in Late Cretaceous time finally separated parts of the Eocimmerian collisional domain from the Eurasian Turan domain. The opening and closing of this new ocean, characterized by the Nain and Sabzevar ophiolitic mélanges, finally transported the Anarak–Jandaq composite terrane to Central Iran, accompanied by large scale rotation of the Central-East Iranian Microcontinent (CEIM). Due to many similarities between the Posht-e-Badam metamorphic complex and the Anarak–Jandaq composite terrane, the former could be part of the latter, if it was transported further south during Tertiary time.  相似文献   

9.
Both the mineralogy and facies of lacustrine bio‐induced carbonates are controlled largely by hydrological factors that are highly dependent upon climatic influence. As such they are useful tools in characterizing ancient lake environments. In this way, the study of the sedimentary record from the small ancient Sarliève Lake (Limagne, Massif Central, France) aims to reconstruct the hydrological evolution during the Holocene, using petrographical, mineralogical and geochemical analyses. The fine‐grained marls, mainly calcitic, display numerous layers rich in pristine Ca‐dolomite, with small amounts of aragonite, which are clearly autochthonous. As these minerals are rather unusual in the temperate climatic context of western Europe, the question arises about their forming conditions, and therefore that of the lacustrine environment. Ca‐dolomite prevails at the base of the sequence as a massive dolomicrite layer and, in the middle part, it builds up most of the numerous laminae closely associated with organic matter. Scanning electron microscope observations reveal the abundance of tiny crystals (tens to hundreds of nanometres) mainly organized as microspheres looking like cocci or bacilli. Such a facies is interpreted as resulting from the fossilization of benthic microbial communities by dolomite precipitation following organic matter consumption and extracellular polymeric substance degradation. These microbial dolomites were precipitated in a saline environment, as a consequence of excess evaporation from the system, as is also suggested by their positive ?18O values. The facies sequence expresses the following evolution: (i) saline pan, i.e. endorheic stage with a perennial lowstand in lake level (Boreal to early Atlantic periods); (ii) large fluctuations in lake level with sporadic freshening of the system (Atlantic); (iii) open lake stage (sub‐boreal); and (iv) anthropogenic drainage (sub‐Atlantic).  相似文献   
10.
新疆塔中南坡奥陶系的地层缺失和沉积相变化   总被引:4,自引:0,他引:4  
按照奥陶系内部6个组沉积的时间片段拟定塔中南坡不同区块存在不同程度的缺失。部分关键层段的牙形石和几丁虫组合特征证明一间房组和恰尔巴克组在塔中部分井区是存在的,但恰尔巴克组的分布范围最狭窄。总体上,塔中南坡隆起区地层缺失较多,古城墟隆起基本完整。据缺失状况和岩相展布,显示塔中南坡的沉积单元具有由东往西迁移的特征,且各时段迁移的距离与速度存在较大差异。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号