首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  国内免费   1篇
地质学   1篇
自然地理   3篇
  2011年   2篇
  2007年   1篇
  1986年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
Although highly branched from the base, all shrubs have short main axes linking canopies to root systems. Main axes become increasingly segmented into independent canopy/stem/root segments as aridity increases across continents. The resulting hydraulic modularity has been proposed as an adaption to low soil moisture that prevents runaway embolism and minimizes risk of hydraulic failure. Here we test the hypotheses that (1) at a regional scale, the importance of axis-splitting species in communities declines with increasing elevation, as a proxy for precipitation, and (2) that this decline is explained by lower occurrence of low-elevation dominant species. We evaluated all species for axis splitting and determined importance values in plots along an elevational transect in the Mojave Desert. As predicted, as elevation increased, the total importance of axis-splitting species declined from 100% at low-elevation sites to 75% at the highest elevation site. However, this decline was not due solely to the decline of the lower elevation dominant species. At the high elevation site, the influx of new species resulted in a six-fold increase in species richness and almost all of the new high elevation woody eudicotyledonous species exhibited axis splitting; non-splitting species were represented by other growth forms.  相似文献   
2.
Along with the booming of dendrochronology in China, the woody species for the tree-ring study have expanded gradually from tree species to the shrub and dwarf shrub species in the last decades. The zonal woody species in the vast alpine mountains, arid desert areas and arid regions in China are mostly shrubs and semi-shrubs, which is very important to understand the process of regional evolution, environmental protection and ecological recovery. In this paper, the shrub species which have been studied on tree rings in cold and arid areas of China were collected and sorted, and the fundamental research advances were presented, which include the shrub tree ring identification, radial growth characteristics, and chronology construction by different parameters. The applications of shrub dendrochronology to the subjects in eco-response, paleoclimate reconstruction, hydrological process, ecological study of artificial forest and ecological restoration were also presented. The prospect of shrub dendrochronology in the future was also discussed.  相似文献   
3.
Matteo Tosi   《Geomorphology》2007,87(4):268-283
The role of root strength is important in stabilising steep hillslopes which are seasonally affected by storm-induced shallow landslides. In the Italian Apennines, steep (25–40°) slopes underlain by mudstone are generally stable if they are covered by shrubs whose roots anchor into the soil mantle. To quantify the mechanical reinforcement of roots to soil, the root tensile breaking force and the root tensile strength of three autochthonous shrub species commonly growing on stiff clay soils of the Northern Italian Apennines, Rosa canina (L.), Inula viscosa (L.) and Spartium junceum (L.), were measured by means of field and laboratory tests. For each test approximately 150 root specimens were used. The tensile force increases with increasing root diameter following a second-order polynomial regression curve. The tensile strength decreases with increasing root diameter following a power law curve. The field in situ tensile force required to break a root is always smaller than that obtained from laboratory tests for the same root diameter, although their difference becomes negligible if the root diameter is smaller than 5 mm. The influence of root tensile strength on soil shear strength was verified based on the infinite slope stability model. The root reinforcement was calculated using the number and mean diameter of roots. The factor of safety was calculated for three different soil thickness values (0.1, 0.3, and 0.6 m) and topographic slopes between 10° and 45°. The factor of safety for the combination of 0.6 m soil thickness, slopes smaller than 30°, and vegetation of I. viscosa (L.) or S. junceum (L.) is always larger than 1. If a slope is steeper, the factor of safety may be smaller than 1 for I. viscosa (L.), although it is still larger than 1 for S. junceum (L.). In the stiff clayey areas of the Northern Italian Apennines, I. viscosa (L.) mainly colonizes fan/cone/taluses and stabilises these zones up to a topographic gradient < 30° for a soil 0.6 m thick. S. junceum (L.) colonizes not only fan/cone/taluses but also headwalls and cliffs and, for a 0.6 m thick soil, it stabilises these areas up to 45°. The effectiveness of this reinforcement, however, depends strongly on the frequency of soil and seasonal grass vegetation removal due to shallow landsliding before the entrance of the shrub species.  相似文献   
4.
Shrub-induced spatial and temporal heterogeneity of soil properties is common in arid and semiarid ecosystems, and it facilitates the development of plant species diversity. We selected 5-, 10-, 20-, 30-, and 40-year-old Caragana microphylla shrubs in the Shanxi Loess Plateau to evaluate the spatial and temporal heterogeneity of soil properties under and outside the shrub canopy. In addition, the presence of adventitious plant species was investigated to assess the development of herbaceous species diversity. Soil samples were collected from two depths (0-5 cm and 5-10 cm). The establishment and development of shrubs promoted temporal variation, improved soil texture, enhanced soil organic matter (SOM), total nitrogen (TN), and cation exchange capacity (CEC), and decreased pH, bulk density (BD), and soil water content (SWC). The results further confirmed that SOM, TN, and CEC were significantly higher at the center than at the outside of the shrub canopies (P < 0.05) and were higher at the 0-5 cm depth than at the 5-10 cm depth. Moreover, the differences in SOM, TN, and CEC from the center to the outside of shrub canopies were greater under 30- and 40-year-old shrubs than under 10- and 5-year-old shrubs. Furthermore, the spatiotemporal heterogeneity of the soil properties facilitated the development of herbaceous species diversity.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号