首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
地质学   1篇
自然地理   12篇
  2009年   1篇
  2007年   2篇
  2004年   2篇
  2003年   3篇
  2002年   3篇
  1998年   1篇
  1996年   1篇
排序方式: 共有13条查询结果,搜索用时 15 毫秒
1.
We present an evaluation of the procedure by which model prediction bias is examined in palaeolimnological transfer function inference models. We argue that most of the prediction biases commonly reported in the literature are, in fact, fallacious, and are the artificial consequence of the inappropriate manner in which residuals are traditionally examined. We show that the extent of the specious model bias is entirely predictable from first principles and is essentially determined by the strength of the predictive model. We suggest that the analysis of residuals should always be examined as a function of the model's predictions and we discuss the implications of the old and new approaches.  相似文献   
2.
Surface sediments from 68 small lakes in the Alps and 9 well-dated sediment core samples that cover a gradient of total phosphorus (TP) concentrations of 6 to 520 g TP l-1 were studied for diatom, chrysophyte cyst, cladocera, and chironomid assemblages. Inference models for mean circulation log10 TP were developed for diatoms, chironomids, and benthic cladocera using weighted-averaging partial least squares. After screening for outliers, the final transfer functions have coefficients of determination (r2, as assessed by cross-validation, of 0.79 (diatoms), 0.68 (chironomids), and 0.49 (benthic cladocera). Planktonic cladocera and chrysophytes show very weak relationships to TP and no TP inference models were developed for these biota. Diatoms showed the best relationship with TP, whereas the other biota all have large secondary gradients, suggesting that variables other than TP have a strong influence on their composition and abundance. Comparison with other diatom – TP inference models shows that our model has high predictive power and a low root mean squared error of prediction, as assessed by cross-validation.  相似文献   
3.
Quantitative information on vegetation and climate history from the late glacial-Holocene on the Tibetan Plateau is extremely rare. Here, we present palynological results of a 4.30-m-long sediment record collected from Koucha Lake in the Bayan Har Mountains, northeastern Tibetan Plateau. Vegetation change has been traced by biomisation, ordination of pollen data, and calculation of pollen ratios. The application of a pollen-climate calibration set from the eastern Tibetan Plateau to Koucha Lake pollen spectra yielded quantitative climate information. The area was covered by alpine desert/steppe, characteristic of a cold and dry climate (with 50% less precipitation than today) between 16,700 and 14,600 cal yr BP. Steppe vegetation, warm (∼ 1°C higher than today) and wet conditions prevailed between 14,600 and 6600 cal yr BP. These findings contradict evidence from other monsoon-influenced areas of Asia, where the early Holocene is thought to have been moist. Low effective moisture on the northeastern Tibetan Plateau was likely due to high temperature and evaporation, even though precipitation levels may have been similar to present-day values. The vegetation changed to tundra around 6600 cal yr BP, indicating that wet and cool climate conditions occurred on the northeastern Tibetan Plateau during the second half of the Holocene.  相似文献   
4.
Diatom abundances in the surface sediment samples of 41 mountain lakes in the central Austrian Alps (Niedere Tauern) were related to environmental variables using multi-variate techniques. Canonical correspondence analysis (CCA) revealed that the pH, date of autumn mixing (A mix), mean August water temperature (T Aug), dissolved organic carbon (DOC), and relative water depth (Z rel) made significant contributions to explain the diatom assemblage variation in the lakes of the training set. A weighted averaging partial least square regression and calibration model was used to establish Di-pH (R 2 boot= 0.72, RMSEPboot= 0.131), and a thermistor measurements-based PLS model for A mix (R 2 boot= 0.71, RMSEPboot= 0.006 log10 Julian days). The latter showed a better prediction than T Aug, and was used in terms of climate change. These transfer functions, together with analyses of loss on ignition (LOI), the total carbon/nitrogen (C/N)-ratios, and selected pollen, were applied to an early to mid-Holocene (11.5–4 cal. ky BP) sediment core section from an Austrian Alpine treeline lake on crystalline bedrock. Additionally, passive sample scores in the CCA of the diatom training set were used to show trends in the variables DOC and Z rel. During the early Holocene, diatoms indicative of increased pH, extended warm summers, and low water levels dominated. Between 10.2 and 7.6 cal. ky BP it was followed by diatom assemblages that indicated an increase in lake water depth and an earlier A mix. The multi-proxy data suggest that the A mix decline is the result of a series of snow-rich summer cool and wet climate fluctuations, which were divided by climate warming at ∼9 cal. ky BP. Increased A mix, LOI and DOC, and the correspondent decline in the C/N-ratios, show subsequent climate warming between 7.3 and 6 cal. ky BP. The long-term trend in Di-pH indicates the impact of catchment-related processes during the early-Holocene, that were superimposed by climate.  相似文献   
5.
The diatom composition in surface sediments from 119 northern Swedish lakes was studied to examine the relationship with lake-water pH, alkalinity, and colour. Diatom-based predictive models, using weighted-averaging (WA) regression and calibration, partial least squares (PLS) regression and calibration, and weighted-averaging partial least squares (WA-PLS) regression and calibration, were developed for inferences of water chemistry conditions. The non-linear response between the diatom assemblages and pH and alkalinity was best modelled by weighted-averaging methods. The lowest prediction error for pH was obtained using weighted averaging, with or without tolerance downweighting. For alkalinity there was still some information in the residual structure after extracting the first weighted-averaging component, which resulted in a slight improvement of predictions when using a two component WA-PLS model. The best colour predictions were obtained using a two component PLS model. Principal component analysis (PCA) of the prediction errors, with some characteristics of the training set included as passive variables, was performed to compare the results for the different alkalinity predictive models. The results indicate that calibration techniques utilizing more than one component (PLS and WA-PLS) can improve the predictions for lakes with diatom taxa that have broad tolerances. Furthermore, we show that WA-PLS performs best compared with the other techniques for those lakes that have a high relative abundance of the most dominant taxa and a corresponding low sample heterogeneity.  相似文献   
6.
This study investigated the distribution of subfossil diatom assemblages in surficial sediments of 100 lakes along steep ecological and climatic gradients in northernmost Sweden (Abisko region, 67.07° N to 68.48° N latitude, 17.67° E to 23.52° E longitude) to develop and cross-validate transfer functions for paleoenvironmental reconstruction. Of 19 environmental variables determined for each site, 15 were included in the statistical analysis. Lake-water pH (8.0%), sedimentary loss-on-ignition (LOI, 5.9% and estimated mean July air temperature (July T, 4.8%) explained the greatest amounts of variation in the distribution of diatom taxa among the 100 lakes. Temperature and pH optima and tolerances were calculated for abundant taxa. Transfer functions, based on WA-PLS (weighted averaging partial least squares), were developed for pH (r2 = 0.77, root-mean-square-error of prediction (RMSEP) = 0.19 pH units, maximum bias = 0.31, as assessed by leave-one-out cross-validation) based on 99 lakes and for July T (r2 = 0.75, RMSEP = 0.96 °C, max. bias = 1.37 °C) based on the full 100 lake set. We subsequently assessed the ability of the diatom transfer functions to estimate lake-water pH and July T using a form of independent cross-validation. To do this, the 100-lake set was divided in two subsets. An 85-lake training-set (based on single limnological measurements) was used to develop transfer functions with similar performance as those based on the full 100 lakes, and a 15-lake test-set (with 2 years of monthly limnological measurements throughout the ice-free seasons) was used to test the transfer functions developed from the 85-lake training-set. Results from the intra-set cross-validation exercise demonstrated that lake-specific prediction errors (RMSEP) for the 15-lake test-set corresponded closely with the median measured values (pH) and the estimations based on spatial interpolations of data from weather stations (July T). The prediction errors associated with diatom inferences were usually within the range of seasonal and interannual variability. Overall, our results confirm that diatoms can provide reliable and robust estimates of lake-water pH and July T, that WA-PLS is a robust calibration method and that long-term environmental data are needed for further improvement of paleolimnological transfer functions.  相似文献   
7.
About 145 freshwater to hypersaline lakes of the eastern Tibetan Plateau were investigated to develop a transfer function for quantitative palaeoenvironmental reconstructions using ostracods. A total of 100 lakes provided sufficient numbers of ostracod shells. Multivariate statistical techniques were used to analyse the influence of a number of environmental variables on the distributions of surface sediment ostracod assemblages. Of 23 variables determined for each site, 19 were included in the statistical analysis. Lake water electrical conductivity (8.2%), Ca% (7.6%) and Fe% (4.8%, ion concentrations as % of the cations) explained the greatest amounts of variation in the distribution of ostracod taxa among the 100 lakes. Electrical conductivity optima and tolerances were calculated for abundant taxa. A transfer function, based on weighted averaging partial least squares regression (WA-PLS), was developed for electrical conductivity (r 2 = 0.71, root-mean-square-error of prediction [RMSEP] = 0.35 [12.4% of gradient length], maximum bias = 0.64 [22.4% of gradient length], as assessed by leave-one-out cross-validation) based on 96 lakes. Our results show that ostracods provide reliable estimates of electrical conductivity and can be used for quantitative palaeoenvironmental reconstructions similarly to more commonly used diatom, chironomid or pollen data.  相似文献   
8.
The variability of diatom species composition in lake surface sediments was studied along transects in four lakes in northeastern Germany. Three dimictic lakes (Dudinghausener See, Tiefer See, and Cambser See) and one shallow lake (Groß Peetscher See) were sampled. Large differences in diatom composition were found between adjoined samples from different depths within one lake. These differences were mainly displayed by planktonic species. For example, the relative frequency of Stephanodiscus alpinus varied between 4% and 43% within the surface sediment samples of the open-water region of Dudinghausener See. Using transfer functions for total phosphorus (TP) based on the European Diatom data-base (EDDI) combined TP data-set and a local data-set, the inferred TP values differed strongly within one lake when using Weighted Averaging-Partial Least Squares (WA-PLS) regression. In Tiefer See (average of measured TP: 30 μg l?1), the inferred TP values range from 45 to 110 μg l?1 using the transfer function based on WA-PLS regression and the EDDI data-set; and from 16 to 100 μg l?1 using WA-PLS and a local data-set. Performing Maximum Likelihood (ML) regression reduced the difference between measured and inferred values. For Tiefer See, the inferred TP values range between 16 and 45 μg l?1 using ML regression and the local data-set. Therefore, it seems that ML regression can deal better with the natural variability in species composition than WA-PLS regression. In general, it was shown that by using ML regression and the local data-set, the error of the inferred values was significant lower for all lakes than using WA-PLS regression and the EDDI data-set. The Root Mean Square Error of Prediction (RMSEP) was not useful in selecting the most stable transfer function.  相似文献   
9.
Chrysophyte cysts were identified from the surface sediment of 105 mountain lakes in the Pyrenees (NE Spain), and their statistical relationship to water chemistry was examined using canonical correspondence analysis (CCA). The chemical parameters that explained significant and independent amounts of variability were alkalinity, pH, potassium, nitrate and magnesium. In a CCA using these parameters, the first canonical axis was related to a gradient of alkalinity and pH, which reflected the varying nature of the watershed bedrock in the Pyrenees, while the second axis was correlated with potassium (negatively) and nitrate (positively). The potential for environmental reconstructions of the five chemical parameters was further studied by: (i) analyzing the distribution of optima and tolerances calculated by weighted-averaging (WA); (ii) carrying out detrended canonical correspondence analysis (DCCA) with a single environmental variable; and (iii) examining the performance of WA-PLS transfer functions. Acceptable transfer functions were obtained for alkalinity, pH and nitrate. However, for potassium and magnesium the tolerance of cysts was too broad and the distribution of optima too skewed, respectively. The possibility of reconstructing nitrogen-related issues using chrysophyte cysts is particularly interesting because of the lack of direct chemical records of nitrogen compounds in sediments. Nitrate reconstructions using transfer functions may be complemented by a holistic reconstruction using partial CCA, where, after subtracting the effects of other chemicals, samples are ordered on a plain defined by potassium and nitrate. This ordination could show down-core trends in lake productivity and renewal time.  相似文献   
10.
Climate in central Asia is dominated by the Asian monsoon. The varying impact of the summer monsoon across the Tibetan (Qinghai-Xizang) Plateau provides a strong gradient in precipitation, resulting in lakes of different salinity. Diatoms have been shown to indicate changes in salinity. Thus, transfer functions for diatoms and salinity or related environmental variables represent an excellent tool for paleoclimatic reconstructions in the Tibetan Plateau. Forty freshwater to hypersaline lakes (salinity: 0.1 to 91.7 g l–1) were investigated in the eastern Tibetan Plateau. The relationship between 120 diatom taxa and conductivity, maximum water depth and major ions were analyzed using an indicator value approach, ordination and taxon response models. Canonical correspondence analysis indicated that conductivity was the most important variable, accounting for 10.8% of the variance in the diatom assemblages. In addition water depth and weathering were influential. Weighted Averaging (WA) and Weighted Averaging Partial Least Square (WA-PLS) regression and calibration models were used to establish diatom-conductivity and water depth transfer functions. An optimal two-component WA-PLS model provided a high jack-knifed coefficient of prediction for conductivity (r2 jack = 0.92), with a moderate root mean squared error of prediction (RMSEPjack = 0.22), a very low mean bias (0.0003), and a moderate maximum bias (0.26). A WA model with tolerance downweighting resulted in a slightly lower r2 jack (0.89) for water depth, with RMSEPjack= 0.26, mean bias = –0.0103 and maximum bias = 0.26.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号