首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   1篇
  国内免费   2篇
大气科学   1篇
地球物理   8篇
地质学   6篇
自然地理   1篇
  2022年   1篇
  2021年   5篇
  2020年   3篇
  2018年   1篇
  2013年   2篇
  2005年   1篇
  2003年   1篇
  2001年   2篇
排序方式: 共有16条查询结果,搜索用时 368 毫秒
1.
Western disturbances (WDs) and Indian summer monsoon (ISM) led precipitation play a central role in the Himalayan water budget. Estimating their contributions to water resource is although a challenging but essential for hydrologic understanding and effective water resource management. In this study, we used stable water isotope data of precipitation and surface waters to estimate the contribution of ISM and WDs to the water resources in three mountainous river basins - Indus, Bhagirathi and Teesta river basins of western, central and Eastern Himalayas. The study reveals distinct seasonality in isotope characteristics of precipitation and surface waters in each river basin is due to changes in moisture source, hydrometeorology and relief. Despite steady spatial variance in the slope and intercept of regression lines from the Teesta to Indus and the Bhagirathi river basins, the slope and intercept are close to the global meteoric water line and reported local meteoric water line of other regions in the Himalayas and the Tibetan Plateau. The two-component end-member mixing method using d-excess as tracer were used to estimate the contribution from ISM and WD led precipitation to surface water in aforementioned river basins. The results suggest that the influence of the ISM on the water resources is high (>72% to annual river flow) in Teesta river basin (eastern Himalayas), while as the WDs led precipitation is dominantly contributing (>70% average annual river flow) to the surface waters in the Indus river basin (western Himalayas). The contribution of ISM and WD led precipitation in Bhagirathi river basin is 60% and 40%, respectively. The findings demonstrate that the unusual changes in the ISM and WD moisture dynamics have the potential to affect the economy and food security of the region, which is dependent on the availability of water resources. The obtained results are of assistance to policy makers/mangers to make use of the information for better understanding hydrologic response amid unusual behaviour of the dual monsoon system over the region.  相似文献   
2.
地下水氘过量参数的演化   总被引:18,自引:4,他引:18  
本文详细地介绍了提出水体氘过量参数 (d值 )的依据、源于大气降水的地下水氘过量参数 (d值 )的演化特点、影响因素、误差来源 ,并分析和讨论了应用中的一些问题。  相似文献   
3.
Stable water isotopes δ18O and δ2H are used to investigate precipitation trends and storm dynamics to advance knowledge of precipitation patterns in a warming world. Herein, δ18O and δ2H were used to determine the relationship between extratropical cyclonic precipitation and local meteoric water lines (LMWLs) in the eastern Ohio Valley and the eastern United States. Precipitation volume weighted and unweighted central Ohio LMWLs, created with samples collected during 2012–2018, showed that temperature had the greatest effect on precipitation isotopic composition. HYSPLIT back trajectory modelling showed that precipitation was primarily derived from a mid-continental moisture source. Remnants of major hurricanes were collected as extratropical precipitation during the 2012–2018 sampling period in central Ohio. Extratropical precipitation samples were not significantly different from the samples that created the central Ohio LMWL. Six additional LMWLs were derived from United States Geological Survey (USGS) Atmospheric Integrated Research Monitoring Network (AIRMoN) samples collected in Pennsylvania, Delaware, Tennessee, Vermont, New Hampshire, and Oxford, Ohio. Meteoric water lines describing published samples from Superstorm Sandy, plotted with these AIRMoN LMWLs, showed isotopic composition of Superstorm Sandy precipitation was commonly more depleted than the average isotopic composition at the mid-latitude locations. Meteoric water lines describing the Superstorm Sandy precipitation were not significantly different in slope from LMWLs generated within 300 km of the USGS AIRMoN site. This finding, which was observed across the eastern Ohio Valley and eastern United States, demonstrated a consistent precipitation δ2H–δ18O relationship for extratropical cyclonic and non-cyclonic events. This work also facilitates the analysis of storm development based on the relationship between extratropical event signature and the LMWL. Analysis of extratropical precipitation in relation to LMWLs along storm tracks allows for stronger development of precipitation models and understanding of which climatic and atmospheric factors determine the isotopic composition of precipitation.  相似文献   
4.
降水中氢氧稳定同位素的空间分布是同位素水文学和同位素生态学研究的基础资料, 近年来高空间分辨率的氢氧稳定同位素分布数据产品获得了越来越多的重视。利用新疆天山地区实测降水同位素数据, 评估两套常用的全球降水同位素分布模拟数据(OIPC和RCWIP)的适用性。结果表明: 从时间尺度来看, 两套产品在夏半年(4 - 10月)的模拟效果明显优于冬半年(11月 - 次年3月); 在各自然区中, 准噶尔盆地荒漠自然区的模拟效果相对较好, 而吐鲁番盆地-哈密(戈壁)荒漠自然区模拟效果相对较差。通过均方根误差、 线性判定系数、 平均偏置误差、 平均绝对误差等指标的比较, 在本研究区内RCWIP数据产品对降水同位素值的模拟效果比OIPC的效果好。结合乌鲁木齐多年降水氢氧稳定同位素数据, 发现降水同位素年际变化差异并未明显影响到代表性, 在缺乏长期监测的情况下这两套数据仍有重要的使用价值。  相似文献   
5.
Precipitation isotope ratios (O and H) record the history of water phase transitions and fractionation processes during moisture transport and rainfall formation. Here, we evaluated the isotopic composition of precipitation over the central-southeastern region of Brazil at different timescales. Monthly isotopic compositions were associated with classical effects (rainfall amount, seasonality, and continentality), demonstrating the importance of vapor recirculation processes and different regional atmospheric systems (South American Convergence Zone-SACZ and Cold Fronts-CF). While moisture recycling and regional atmospheric processes may also be observed on a daily timescale, classical effects such as the amount effect were not strongly correlated (δ18O-precipitation rate r ≤ –0.37). Daily variability revealed specific climatic features, such as δ18O depleted values (~ –6‰ to –8‰) during the wet season were associated with strong convective activity and large moisture availability. Daily isotopic analysis revealed the role of different moisture sources and transport effects. Isotope ratios combined with d-excess explain how atmospheric recirculation processes interact with convective activity during rainfall formation processes. Our findings provide a new understanding of rainfall sampling timescales and highlight the importance of water isotopes to decipher key hydrometeorological processes in a complex spatial and temporal context in central-southeastern Brazil.  相似文献   
6.
冯芳  李忠勤  金爽  冯起  刘蔚 《水科学进展》2013,24(5):634-641
依据乌鲁木齐河流域山区3个站点实测次降水δ18O和δD数据以及气象观测资料,结合临近GNIP(Global Network of Isotopes in Precipitation)站点数据,对其降水δ18O和δD特征及水汽来源进行了分析。结果表明,大气降水中δ18O值波动范围大,但呈现明显的季节性变化:冬季降水δ18O较低,夏季降水δ18O较高。受流域山区气候和地理条件影响,从上游到下游各站点大气降水线截距和斜率均呈现逐渐减小趋势。大气降水中δ18O和δD与日均气温存在密切正相关关系,且温度与δ18O之间的相关性优于δD。降水中d-excess值也表现出季节性变化,冬季降水d-excess值高于夏季降水。利用HYSPLIT 4.0气团轨迹模型,得出夏季水汽主要来源西风环流输送,冬季受西风环流和极地气团共同影响。  相似文献   
7.
四川牟尼沟水体的同位素地球化学特征   总被引:3,自引:3,他引:3  
李宏业  尹观  杨俊义  范晓 《地球学报》2003,24(6):529-534
牟尼沟位于四川省北部阿坝州松潘县,青藏高原东隅,系黄龙-九寨沟国家风景名胜区的一部分。文中运用同位素地球化学的方法,对牟尼沟各水体中的δD、δ^18O、T值、氘过量参数(d)和元素化学分析数据进行研究,初步查明牟尼沟内大气降水、地表水、地下水以及主要泉水之间的循环和补、径、排关系。珍珠泉和翡翠泉为沟内出露的主要泉水;其中二道海沟珍珠泉系地下深循环热水的露头,是大气降水通过补给区弱透水覆盖层中的断裂或裂隙下渗,通过深大断裂循环至地下深部,与深部热流进行热交换后,返回地表出露,其作为天然温泉开发具有较大的潜力;矿泉水厂沟的翡翠泉是典型的酸性岩溶冷泉,含水层水的径流较珍珠泉慢,且滞留时间相对长些,含有一定的CO2,系一深部含水层地下水的露头,它源自全区补给高度最高的大气降水。泉水流量大且稳定,水质好,作为矿泉饮用水开发具有重要的经济价值;沟内大多数地表径流来源于大气降水和浅层地下水补给,丰水期以大气降水为主,枯水期浅层地下水补入到地表径流中的比例相对增加。这种对地表径流的调节作用,对于保持风景区内的景观具有重要作用。同时对于评估珍珠泉、翡翠泉的开发潜力以及牟尼沟景区的旅游经济和可持续发展具有重要意义。  相似文献   
8.
Precipitation plays an important role in permafrost hydrology; it can alter the hydrothermal condition of the active layer and even influence the permafrost aggradation or degradation. Moisture recycling from evaporation and transpiration can greatly contribute to local precipitation in some regions. This study selected four monitoring sites and used an isotope mixing model to investigate local moisture recycling in permafrost regions of the central Qinghai-Tibet Plateau (QTP). The results showed that the local water vapour flux in the summer and autumn were dominantly influenced by westerlies and the Indian monsoon. Moistures for precipitation in Wudaoliang (WDL) and Fenghuoshan (FHS) mainly came from the western QTP, eastern Tianshan Mountains, western Qilian Mountains, and the surrounding regions. In comparsion, more than half of precipitation at Tanggula (TGL) was mostly sourced from the Indian monsoon. Local moisture recycling ratios at the four sites ranged from 14% ± 3.8% to 31.6% ± 4.8%, and depended on the soil moisture and relative humidity. In particular, the higher soil moisture and relative humidity promoted local moisture recycling, but frozen ground might be a potential influencing factor as well. The moisture recycling ratios of the study area were consistent with the results from both the Qinghai Lake Basin and the Nam Co Basin, but differed from those of the northwestern QTP. This difference may indirectly confirm the great spatial variability in precipitation on the QTP. Moreover, the rising air temperature and ground temperature, increasing precipitation, higher soil moisture, higher vegetation cover, and expanding lakes in the study area may be conductive to enhancing future local moisture recycling by altering ground surface conditions and facilitating the land surface evaporation and plant transpiration.  相似文献   
9.
ABSTRACT

The temporal variations in electrical conductivity and the stable isotopes of water, δD and δ18O, were examined at Chhota Shigri Glacier, India, to understand water sources and flow paths to discharge. Discharge is highly influenced by supraglacially derived meltwater during peak ablation, and subglacial meltwaters are more prominent at the end of the melt season. The slope of the best fit linear regression line for δD versus δ18O, for both supraglacial and runoff water, is lower than that for precipitation (snow and rain) and surface ice, indicating strong isotopic fractionation associated with the melting processes. The slope of the local meteoric water line (LMWL) is close to that of the global meteoric water line (GMWL), reflecting that the moisture source is predominantly oceanic. The d-excess variation in rainwater confirms that the southwest monsoon is the main contributor during summer while the remainder including winter is mostly influenced by westerlies.  相似文献   
10.
Spatial and temporal variations of the isotopic composition of precipitation over Thailand were investigated. The local meteoric water line for Thailand deviates slightly from the global meteoric water line, with lower slopes (7.62 ± 0.07, 7.59 ± 0.08) and intercepts (6.42 ± 0.39, 6.22 ± 0.42) using ordinary and precipitation weighted methods. Differences in spatial and temporal δ18O distributions between the tropical monsoon and tropical savanna climate zones were found due to differing moisture source contributions and seasonal precipitation patterns. The temporal data reveals that the northeast monsoon rains originate from isotopically-enriched local moisture with isotope values of −9.36 to −0.09‰ (mean − 3.73 ± 0.42‰), whereas the southwest monsoon clouds had a more significant rainout effect from Rayleigh distillation, with isotope values of −9.56 to −1.78‰ (mean − 5.40 ± 0.38‰). The precipitation amount at each site was negatively correlated with δ18O (−0.24 to −3.20‰ per 100 mm, R2 = 0.1–0.9). Furthermore, δ18O was negatively correlated with geography (latitude, altitude) for the southwest monsoon periods, as expected based on other observed correlations. However, an inverse correlation was seen in the northeast monsoon due to differing moisture transportation as part of the continental effect. The correlation coefficient (R) was higher in the southwest monsoon (−0.84 for latitude effect, −0.64 for altitude effect) than the northeast monsoon (0.67 for latitude effect, 0.35 for altitude effect). The spatial pattern of isotopic composition reflects the southwest monsoon more clearly than the northeast monsoon, but the two monsoons also have a cancelling impact on orographic patterns. An agreement of the δ18O and deuterium excess (d-excess) was a negative correlation and found to reflect precipitation sources and re-evaporation processes. The d-excess was slightly higher for the northeast monsoon, bringing moisture from the Pacific Ocean and travelling across the continent before reaching the observed stations. By contrast, the d-excess was relatively lower for the Indian Ocean's moisture in the southwest monsoon.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号