首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4579篇
  免费   1304篇
  国内免费   2008篇
测绘学   456篇
大气科学   4011篇
地球物理   724篇
地质学   1180篇
海洋学   245篇
天文学   15篇
综合类   283篇
自然地理   977篇
  2024年   70篇
  2023年   137篇
  2022年   223篇
  2021年   278篇
  2020年   286篇
  2019年   377篇
  2018年   255篇
  2017年   332篇
  2016年   285篇
  2015年   340篇
  2014年   420篇
  2013年   515篇
  2012年   451篇
  2011年   434篇
  2010年   307篇
  2009年   356篇
  2008年   330篇
  2007年   413篇
  2006年   338篇
  2005年   284篇
  2004年   230篇
  2003年   208篇
  2002年   148篇
  2001年   141篇
  2000年   141篇
  1999年   83篇
  1998年   80篇
  1997年   77篇
  1996年   67篇
  1995年   68篇
  1994年   57篇
  1993年   33篇
  1992年   29篇
  1991年   23篇
  1990年   14篇
  1989年   17篇
  1988年   16篇
  1987年   4篇
  1986年   7篇
  1985年   7篇
  1984年   4篇
  1982年   1篇
  1981年   1篇
  1980年   4篇
排序方式: 共有7891条查询结果,搜索用时 15 毫秒
1.
Forests in the Southeastern United States are predicted to experience future changes in seasonal patterns of precipitation inputs as well as more variable precipitation events. These climate change‐induced alterations could increase drought and lower soil water availability. Drought could alter rooting patterns and increase the importance of deep roots that access subsurface water resources. To address plant response to drought in both deep rooting and soil water utilization as well as soil drainage, we utilize a throughfall reduction experiment in a loblolly pine plantation of the Southeastern United States to calibrate and validate a hydrological model. The model was accurately calibrated against field measured soil moisture data under ambient rainfall and validated using 30% throughfall reduction data. Using this model, we then tested these scenarios: (a) evenly reduced precipitation; (b) less precipitation in summer, more in winter; (c) same total amount of precipitation with less frequent but heavier storms; and (d) shallower rooting depth under the above 3 scenarios. When less precipitation was received, drainage decreased proportionally much faster than evapotranspiration implying plants will acquire water first to the detriment of drainage. When precipitation was reduced by more than 30%, plants relied on stored soil water to satisfy evapotranspiration suggesting 30% may be a threshold that if sustained over the long term would deplete plant available soil water. Under the third scenario, evapotranspiration and drainage decreased, whereas surface run‐off increased. Changes in root biomass measured before and 4 years after the throughfall reduction experiment were not detected among treatments. Model simulations, however, indicated gains in evapotranspiration with deeper roots under evenly reduced precipitation and seasonal precipitation redistribution scenarios but not when precipitation frequency was adjusted. Deep soil and deep rooting can provide an important buffer capacity when precipitation alone cannot satisfy the evapotranspirational demand of forests. How this buffering capacity will persist in the face of changing precipitation inputs, however, will depend less on seasonal redistribution than on the magnitude of reductions and changes in rainfall frequency.  相似文献   
2.
This paper presents the first application of an advanced meshfree method, ie, the edge-based smoothed point interpolation method (ESPIM), in simulation of the coupled hydro-mechanical behaviour of unsaturated porous media. In the proposed technique, the problem domain is spatially discretised using a triangular background mesh, and the polynomial point interpolation method combined with a simple node selection scheme is adopted for creating nodal shape functions. Smoothing domains are formed on top of the background mesh, and a constant smoothed strain, created by applying the smoothing operation over the smoothing domains, is assigned to each smoothing domain. The deformation and flow models are developed based on the equilibrium equation of the mixture, and linear momentum and mass balance equations of the fluid phases, respectively. The effective stress approach is followed to account for the coupling between the flow and deformation models. Further coupling among the phases is captured through a hysteretic soil water retention model that evolves with changes in void ratio. An advanced elastoplastic constitutive model within the context of the bounding surface plasticity theory is employed for predicting the nonlinear behaviour of soil skeleton. Time discretisation is performed by adopting a three-point discretisation method with growing time steps to avoid temporal instabilities. A modified Newton-Raphson framework is designed for dealing with nonlinearities of the discretised system of equations. The performance of the numerical model is examined through a number of numerical examples. The state-of-the-art computational scheme developed is useful for simulation of geotechnical engineering problems involving unsaturated soils.  相似文献   
3.
用双三次样条函数和GPS资料反演现今中国大陆构造形变场   总被引:38,自引:20,他引:18  
将中国大陆现今构造变动视为一种连续的地壳变形,利用双三次样条函数模拟了近期GPS测定的大陆内部及周边地区412个测站速率,反演大陆地区自洽的构造变动速度场和应变率场.模拟结果显示:印度板块与欧亚板块的碰撞、挤压是构成中国大陆内部岩石层水平形变的主要驱动力.印度板块在东喜马拉雅构造结深深插入青藏高原,造成地壳大规模的缩短和抬升.青藏高原东南部的喜马拉雅带、拉萨和羌塘地块以及青藏高原东南边的川滇地区,内部构造活动强烈,其内部的构造变形包含地壳碎片的冲断、褶皱和侧向逃逸.大陆地壳(或岩石圈)的增厚,尤其是喜马拉雅山脉南北向的快速缩短和青藏高原东西向的缓慢拉张,大约吸收了印欧板块会聚量的85%,西藏中东地区东西向的拉张速率达到了(16±2.0)mm/a,且顺时针方向扭转明显.印度板块相对欧亚板块运动的欧拉极为(29.7°N, 19.3°E, 0.392°/Ma);华南地块相对于欧亚大陆向东(102°±7.4°)南的运动速率是(11±1.54)mm/a,华南块体相对欧亚板块运动的欧拉极为(62.25°N, 126.56°E, 0.141°/Ma);塔里木地块相对较稳定,其西部运动速度高于东部运动速度,作顺时针方向旋转.总体上讲,中国大陆运动方向为北偏东呈辐射状,从西部近南北方向的运动转向东部地区东南方向的运动,绕东喜马拉雅构造结有一顺时针方向的旋转.横穿喜马拉雅构造带及青藏内部的南北向压缩速率为(19±2.0)mm/a,横穿西天山构造带的南北向压缩平均速率为(13±1.5)mm/a,横穿东天山构造带的南北向压缩平均速率为(6.0±1.4)mm/a.阿尔金断裂带的左旋走滑速率为(6±1.2)mm/a.  相似文献   
4.
The precipitation patterns in flood season over China associated with the El Niño/Southern Oscillation (ENSO) are investigated, especially in the eastern China, using the rather long period rainfall data in this century. The results show that there were remarkable differences between the precipitation patterns in flood seasons of ENSO warm phase (El Niño year) and cold phase (La Niña year), as well as between the patterns in El Niño years and their following years. The most parts of China received below normal rainfall in flood season of the onset years of El Niño events, but the coastal area of Southeast China received above normal amounts. Comparatively, the most parts of China received above normal rainfall in flood season of the following years of El Niño events, but the eastern part of the reaches among the Huanghe (Yellow) River, the Huaihe River and the Haihe River, and the Northeast China received less. During ENSO cold phase, the reaches of the Changjiang (Yangtze) River and the North China received more amounts than normal rainfall in flood season of the onset years of La Niña events, and the other regions of China received less. In the following years of La Niña events, the coastal area of the Southeast China, the most part of the Northeast China and the regions between the Huanghe River and the Huaihe River received more precipitation during flood seasons, but the other parts received below normal precipitation.  相似文献   
5.
A major difficulty in remote sensing is handling the many data from sensors aboard aircraft and satellites. In this paper we identify an optimal procedure for sampling remotely sensed data before their storage or on their retrieval. The procedure depends on spatial correlation in the scene and uses kriging to estimate values that have been lost. An example in which data from an airborne multispectral scanner could be diminished to only about one tenth without serious loss of precision illustrates the method.  相似文献   
6.
为了根据离散观测数据构制连续空间重力变化图像,分析和讨论了3种数值插值方法,计算结果表明多面函数方法插值精度最高。由于逐步回归分析筛选核函数中心点的计算繁琐,文中提出根据分形理论和Shannon取样定理来确定核函数中心点。对滇西试验场进行模拟试算,插值精度可达到4~5(10-8ms-2)。  相似文献   
7.
The main reasons for the high content of inorganic N and its increase by several times in the Changjiang River and its mouth during the last 40 years were analysed in this work. The inorganic N in precipitation in the Changjiang River catchment mainly comes from gaseous loss of fertilizer N, N resulting from the increases of population and livestock, and from high temperature combustions of fossil fuels. N from precipitation is the first N source in the Changjiang River water and the only direct cause of high content of inorganic N in the Changjiang River and its mouth. The lost N in gaseous form and from agriculture non-point sources fertilizer comprised about 60% of annual consumption of fertilizer N in the Changjiang River catchment and were key factors controlling the high content of inorganic N in the Changjiang River mouth. The fate of the N in precipitation and other N sources in the Changjiang River catchment are also discussed in this paper.  相似文献   
8.
气候变化对塔里木河来自天山的地表径流影响   总被引:21,自引:10,他引:11  
塔里木河水资源主要来自天山南坡两条源流,选择西段阿克苏河和中段开都河-孔雀河作为研究区.1956-2003年研究河源山区气温呈持续升温且降水波动增加的趋势,其中1995-2003年升温强劲,升温速率高出48 a期间平均的3倍以上;降水自1986年后持续增加,20世纪90年代较80年代增幅达18%,并显示出河源山区湿岛向塔里木盆地扩展.因高山缺少气象观测,出山径流过程变化可以综合反映中高山带的气候变化.塔里木河来自天山的地表径流在1986-2003年间持续增长,以冰川融水补给为主的库玛拉克河,1994年以来年径流量增加已在前期平均值基础上提升了一个台阶;开都河以降水径流补给为主,1986-2002年出现了观测记录以来的丰水期,并使1986年后博斯腾湖水位快速上升,恢复到1958年记录的最高水位以上.两河年径流变化趋势基本相似,但也显示有西、中段的气候变化局部差异,出现丰枯水期的不一致;然而,在近16 a升温过程中,年径流增长幅度和快慢相近.  相似文献   
9.
Triple diagram method for the prediction of wave height and period   总被引:1,自引:0,他引:1  
Many formulations have been developed so far to predict the wave height and period from fetch length and wind blowing duration for a constant wind speed. This study aimed to predict wave parameters from fetch length and meteorological factors by using triple diagram methodology based on Kriging principles. Proposed model results were compared with Joint North Sea Wave Project (JONSWAP) model which is used so commonly in the ocean and coastal engineering studies. For the implementation of the methodology hourly wave and wind data were obtained from a buoy located in Lake Ontario. Numerical and graphical comparisons demonstrated that the proposed method outperforms the classical formulation.  相似文献   
10.
Atmospheric forcing of the eastern tropical Pacific: A review   总被引:1,自引:8,他引:1  
The increase in marine, land surface, atmospheric and satellite data during recent decades has led to an improved understanding of the air–sea interaction processes in the eastern tropical Pacific. This is also thanks to extensive diagnoses from conceptual and coupled ocean–atmosphere numerical models. In this paper, mean fields of atmospheric variables, such as incoming solar radiation, sea level pressure, winds, wind stress curl, precipitation, evaporation, and surface energy fluxes, are derived from global atmospheric data sets in order to examine the dominant features of the low level atmospheric circulations of the region. The seasonal march of the atmospheric circulations is presented to depict the role of radiative forcing on atmospheric perturbations, especially those dominating the atmosphere at low levels.In the tropics, the trade winds constitute an important north–south energy and moisture exchange mechanism (as part of the low level branch of the Hadley circulation), that determines to a large extent the precipitation distribution in the region, i.e., that associated with the Inter-Tropical Convergence Zone (ITCZ). Monsoonal circulations also play an important role in determining the warm season precipitation distribution over the eastern tropical Pacific through a large variety of air–sea–land interaction mechanisms. Westward traveling waves, tropical cyclones, low latitude cold air intrusions, and other synoptic and mesoscale perturbations associated with the ITCZ are also important elements that modulate the annual rainfall cycle. The low-level jets of the Gulf of California, the Intra-Americas Sea (Gulf of Mexico and Caribbean Sea) and Chocó, Colombia are prominent features of the eastern tropical Pacific low-level circulations related to sub-regional and regional scale precipitation patterns. Observations show that the Intra-Americas Low-Level Jet intensity varies with El Niño/Southern Oscillation (ENSO) phases, however its origin and role in the westward propagation and development of disturbances that may hit the eastern tropical Pacific, such as easterly waves and tropical cyclones, are still unclear. Changes in the intensity of the trade winds in the Caribbean Sea and the Gulf of Mexico (associated with eastern tropical Pacific wind jets) exert an important control on precipitation by means of wind–topography interactions. Gaps in the mountains of southern Mexico and Central America allow strong wind jets to pass over the continent imprinting a unique signal in sea surface temperatures and ocean dynamics of the eastern tropical Pacific.The warm pools of the Americas constitute an important source of moisture for the North American Monsoon System. The northeastern tropical Pacific is a region of intense cyclogenetic activity, just west of the coast of Mesoamerica. Over the oceanic regions, large-scale properties of key variables such as precipitation, moisture, surface energy fluxes and wind stress curl are still uncertain, which inhibits a more comprehensive view of the region and stresses the importance of regional field experiments. Progress has been substantial in the understanding of the ocean and atmospheric dynamics of the eastern tropical Pacific, however, recent observational evidence such as that of a shallow meridional circulation cell in that region, in contrast to the classic concept of the Hadley-type deep meridional circulation, suggests that more in situ observations to validate theories are still necessary.This paper is part of a comprehensive review of the oceanography of the eastern tropical Pacific Ocean.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号