首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   1篇
  国内免费   1篇
地球物理   11篇
地质学   4篇
综合类   2篇
自然地理   5篇
  2024年   1篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2015年   1篇
  2013年   2篇
  2010年   1篇
  2008年   1篇
  2007年   3篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2001年   1篇
  1999年   1篇
  1994年   1篇
排序方式: 共有22条查询结果,搜索用时 31 毫秒
1.
Precipitation is often the sole source of water replenishment in arid and semi‐arid areas and, thus, plays a pertinent role in sustaining desert ecosystems. Revegetation over 40 years using mainly Artemisia ordosica and Caragana korshinskii at Shapotou Desert Experimental Research Station near Lanzhou, China, has established a dwarf‐shrub and microbiotic soil crust cover on the stabilized sand dunes. The redistribution of infiltrated moisture through percolation, root extraction, and evapotranspiration pathways was investigated. Three sets of time‐domain reflectometry (TDR) probes were inserted horizontally at 5, 10, 15, 20, 30 and 40 cm depths below the ground surface in a soil pit. The three sets of TDR probes were installed in dwarf‐shrub sites of A. ordosica and C. korshinskii community with and without a microbiotic soil crust cover, and an additional set was placed in a bare sand dune area that had neither vegetation nor a microbiotic soil crust present. Volumetric soil moisture content was recorded at hourly intervals and used in the assessment of infiltration for the different surface covers. Infiltration varied greatly, from 7·5 cm to more than 45 cm, depending upon rainfall quantity and soil surface conditions. In the shrub community area without microbiotic soil crust cover, infiltration increased due to preferential flow associated with root tunnels. The microbiotic soil crust cover had a significant negative influence on the infiltration for small rainfall events (~10 mm), restricting the infiltration depth to less than 20 cm and increasing soil moisture content just beneath the soil profile of 10 cm, whereas it was not as strong or clear for larger rainfall events (~60 mm). For small rainfall events, the wetting front depth for the three kinds of surface cover was as follows: shrub community without microbiotic soil crust > bare area > shrub community with microbiotic soil crust. In contrast, for large rainfall events, infiltration was similar in shrub communities with and without microbiotic soil crust cover, but significantly higher than measured in the bare area. Soil water extraction by roots associated with evapotranspiration restricted the wetting front penetration after 1 to 3 h of rainfall. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
2.
喀斯特地区由于其环境的特殊性,人为干扰后植被的恢复有很多不确定性。在普定进行标准木解析和年轮调查,对喀斯特地区植被恢复进程进行研究。结果表明,喀斯特植被在恢复过程中,乔木层表现为高度增加、地径增粗,高度、地径的增长分别呈现对数、乘幂曲线,乔木发育时间连续,生长位置随机分布;而在繁殖体大量存在的情况下,植被可以直接由草灌阶段恢复发育形成次生乔林,且恢复时间明显缩短。  相似文献   
3.
Dune mining has had an enormous impact in some coastal regions. This paper reviews: the concepts of rehabilitation, restoration and revegetation as applied to dune mining for heavy minerals, the basic principles of dune rehabilitation, some case studies of rehabilitation and its success, the methods for measuring the success of rehabilitation, the process of producing a dune rehabilitation plan, and makes recommendations for pilot studies and guidelines for the implementation of the rehabilitation plan. Studies in Australia and South Africa in particular, provide successful models to draw upon in formulating the criteria and principles discussed in this paper.  相似文献   
4.
岩质边坡非饱和带水分对于边坡植物生长具有重要的生态学意义.目前对岩质边坡非饱和带水汽运移的系统性研究还很少,现有研究大部分集中在大气与岩体的接触面和凝结水能否生成的定性层面,而未将边坡非饱和带作为一个系统整体来研究.为了阐明岩质边坡非饱和带的水汽运移机制及其与边坡植物生长之间的关系,运用热力学和系统科学的理论,开展边坡温湿度监测试验,进行了详细的水汽运移机制的研究.研究发现,岩质边坡非饱和带内的水汽运移驱动力为水汽分压梯度,水汽从水汽分压大的位置向水汽分压小的位置运移.冬季时,水汽从边坡深部向浅部运移,夏季时,水汽从大气向边坡深部运移.岩质边坡非饱和带内存在水汽饱和带,夏季范围较大,冬季范围收缩.同时,通过对岩质边坡复绿植物的成活率进行监测分析,论述了岩质边坡非饱和带内的水汽内循环机制及其生态学意义.本文对于研究岩体非饱和带水文学、探索植物水分来源、指导岩质边坡复绿乃至干旱半干旱带的生态修复都有极为重要的理论和现实意义.  相似文献   
5.
Stemflow of xerophytic shrubs was monitored on event basis within a revegetated sand dune. Quantity of stemflow showed a clear species‐specific dependence in combination with the rainfall characteristics. Results obtained revealed that for ovate‐leaved C. korshinskii with an inverted cone‐shaped canopy and smooth bark, the quantity of stemflow in depth accounted for 7.2% of the individual gross rainfall, while it was 2.0% for needle‐leaved A. ordosica with a cone‐shaped canopy and coarse bark. There were significant positive linear relationships between stemflow and individual gross rainfall and rainfall intensity for the two shrubs. An individual gross rainfall of 1.4 and 1.8 mm was necessary for stemflow generation for C. korshinskii and A. ordosica, respectively. Multiple regression analysis showed that the abiotic and biotic variables including the individual gross rainfall, mean windspeed (WS), canopy height, branch length, and canopy volume have significant influence on stemflow for C. korshinskii, whereas for A. ordosica, the notable influencing variables were individual gross rainfall, stem diameter, and leaf area index. Generally, WS has less effect on stemflow than that of rainfall for A. ordosica. The correlation relationship between individual gross rainfall and funneling ratio showed that the funneling ratio attains its peak when the gross rainfall is 13 and 16 mm for C. korshinskii and A. ordosica, respectively, implying that the canopy morphology emerged as determining factors on funneling ratio decrease when the individual gross rainfall exceeds these values. In comparison, higher WS increased the funneling ratio remarkably for C. korshinskii than A. ordosica due partly to the greater branch length and canopy projection area in C. korshinskii. Funneling ratio can be used as an integrated variable for the effects of canopy morphology and rainfall characteristics on stemflow. The implication of stemflow on water balance and its contribution to sustain the shrubs and the revegetation efforts was discussed. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
6.
Biological soil crusts (BSCs), which are widespread in arid and semiarid regions, such as sandy deserts, strongly influence terrestrial ecosystems. Once sand‐binding vegetation has been established on sand dunes, BSCs are colonized and gradually develop from cyanobacteria dominated crusts to lichen and moss dominated crusts on dune surfaces. We conducted this study to determine if the occurrence and development of BSCs in the Tengger Desert could be used to determine sand‐binding vegetation changes via altering soil moisture and water cycling using long‐term monitoring data and field experimental observation. BSCs changed the spatiotemporal pattern of soil moisture and re‐allocation by decreasing rainfall infiltration, increasing topsoil water‐holding capacity and altering evaporation. Changes in the soil moisture pattern induced shifting of sand‐binding vegetation from xerophytic shrub communities with higher coverage (35%) to complex communities dominated by shallow‐rooted herbaceous species with low shrub coverage (9%). These results imply that BSCs can be a major factor controlling floristic and structural changes in sand‐binding vegetation and suggest that the hydrological effects of BSCs must be considered when implementing large‐scale revegetation projects in sandy deserts. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
7.
固沙植被区土壤质地与土壤微生物数量的关系   总被引:1,自引:1,他引:0  
土壤微生物是荒漠生态系统的重要组分,参与成土过程与生物地球化学循环,其数量反映土壤质量,是判别退化生态系统恢复程度的重要指标。选取沙坡头固沙植被区土壤中的真菌、细菌、放线菌数量进行研究,分析了其时空分布、恢复特征及影响因子。结果表明:土壤微生物数量随固沙年限增加而增加,随土层深度增加而减少,夏秋季显著大于冬春季。三大类群微生物数量恢复曲线均呈现S型,在固沙植被建立18~24 a后恢复速率达到峰值,24~36 a后数量能够达到天然植被区的31.6%~83.7%。土壤微生物数量恢复过程主要受土壤细物质含量的影响,土壤pH是限制因子。土壤微生物对土壤状况与覆被变化敏感,能较早且敏感地指示生态系统功能的变化。  相似文献   
8.
1IN T R O D U T IO N The dry-hotvalleyisone of the unique physiographic typesinSouthwest China, which ischaracterizedby its dry and hot climate, Savanna-likevegetationand its sharp contrastwith the surrounding landscape units (ZHANG ,1992 ).The dry-hotval…  相似文献   
9.
Abstract

The aim of this study was to evaluate canopy water storage (CWS) of the co-dominant shrubs in the revegetation of sand dunes in northwest China. Our results indicated that CWS differed among the xerophyte taxa studied. The average CWS increased exponentially with decreased raindrop size. The time course of CWS in terms of leaf area indicated that Artemisia ordosica attains its peak value of 0.48 mm within 170 min. The corresponding values for Caragana korshinskii and Hedysarum scoparium were 0.38 mm and 178 min, and 0.32 mm and 161 min, respectively, implying that A. ordosica had a higher CWS than C. korshinskii and H. scoparium. Dry biomass was a desirable predictor for estimation of CWS for C. korshinskii and H. scoparium, and shrub volume for A. ordosica. Our results show that the dependence of CWS on raindrop size varied in accordance with the shrub canopy structure.
Editor Z.W. Kundzewicz  相似文献   
10.
A major obstacle in the rehabilitation of degraded rangelands in Jordan, and the Middle East in general, is poor regeneration from seed. In laboratory, greenhouse, and field experiments, indigenous plant species' seeds tolerated mannitol-induced water stress better than the seeds of introduced plant species. Germination and plant establishment were lower in a silty clay soft compared to peatmoss; seedlings could not penetrate the hard surface layer of the silty clay. Plant regeneration from seed in arid calcareous silty clay rangelands was better when protected from grazing; it was very slow due to surface crusting, low soil moisture content and high soil temperature which prevailed most parts of the year. Contour planting with water harvesting are possible solutions to poor plant establishment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号