首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   349篇
  免费   51篇
  国内免费   84篇
测绘学   18篇
地球物理   73篇
地质学   319篇
综合类   36篇
自然地理   38篇
  2024年   1篇
  2023年   3篇
  2022年   7篇
  2021年   14篇
  2020年   17篇
  2019年   19篇
  2018年   16篇
  2017年   21篇
  2016年   16篇
  2015年   10篇
  2014年   15篇
  2013年   32篇
  2012年   14篇
  2011年   14篇
  2010年   11篇
  2009年   28篇
  2008年   29篇
  2007年   20篇
  2006年   29篇
  2005年   19篇
  2004年   17篇
  2003年   15篇
  2002年   13篇
  2001年   9篇
  2000年   38篇
  1999年   6篇
  1998年   6篇
  1997年   8篇
  1996年   7篇
  1995年   5篇
  1994年   9篇
  1993年   3篇
  1992年   1篇
  1991年   5篇
  1989年   5篇
  1980年   1篇
  1977年   1篇
排序方式: 共有484条查询结果,搜索用时 31 毫秒
1.
This paper deals with detailed analysis of the fiasco created by the Tehri High Dam in Uttarakhand, India, particularly in terms of resettlement and rehabilitation of the local inhabitants. Aspects pertaining to the environmental issues are also discussed. Currently, the river valleys in Uttarakhand state of India are the targets of increasing hydroelectric projects. Virtually all rivers are being exploited for generating environmental friendly power. Having being learned the hard lesson from Tehri Dam, it has been decided to opt for such schemes in which comparatively little submergence and tempering with the fragile eco-systems is involved.However, our observations suggest that even in such schemes if due care is not taken they may turn out to be a failure.  相似文献   
2.
Introduction The Himalaya is considered to be the youngest mountains on the earth, and is tectonically very active, and hence inherently (geologically) vulnerable to hazards. Extreme rainfall events, landslides, debris flows, torrents and flash floods due…  相似文献   
3.
The eastern syntaxis of the Himalaya, Namche Barwa, is dominated by a north-plunging antiform which began to decompress/grow at approximately 4 Ma. New fission-track analyses on both apatite and zircon, combined with previous geochronological ages, indicate that the Namche Barwa Dome also extended laterally while growing vertically. Zircon fission-track ages range from 17.6 to 0.2 Ma and have a strong relationship to the main faults of the region, including the Tertiary Tsangpo Suture, with the younger ages inside the fault bounds towards the syntaxis core on the Indian Plate and the older ages away from the fault. Apatite ages reveal that the dome has grown laterally and now impinges over the older faulted margin onto the Asian Plate. The dome is traversed by the Tsangpo which has followed the trace of the Suture for over 1300 km from its source to the entrance of the dome near Dania. As the Tsangpo crosses the dome it departs from the Suture but rejoins it some 60 km northeastwards. We construe that the Suture has been displaced by the growing antiform and as a consequence, the antecedent river has been “dragged” in a left-lateral sense along the exhuming north-plunging dome. Restoring the Suture to its position prior to 4 Ma reveals a path of the Tsangpo eastwards across the present southwestern position of the Namche Barwa indentation. This geometric reconstrunction implies that the Tsangpo and the Brahmaputra were always one and the same river. In addition, the Tsangpo was tectonically forced into juxtaposition with a tributary of the Jiali-Parlung which it probably then captured. The capture was due to tectonic forcing, in the last 4 Ma, rather than headward retreat of the paleo-Brahmaputra as has been previously suggested.  相似文献   
4.
Structural, petrographic and geochronologic studies of the Kampa Dome provide insights into the tectonothermal evolution of orogenic crust exposed in the North Himalayan gneiss domes of southern Tibet. U–Pb ion microprobe dating of zircons from granite gneiss exposed at the deepest levels within the dome yields concordia 206Pb/238U age populations of 506 ± 3 Ma and 527 ± 6 Ma, with no evidence of new zircon growth during Himalayan orogenesis. However, the granite contains penetrative deformation fabrics that are also preserved in the overlying Paleozoic strata, implying that the Kampa granite is a Cambrian pluton that was strongly deformed and metamorphosed during Himalayan orogenesis. Zircons from deformed leucogranite sills that cross-cut Paleozoic metasedimentary rocks yield concordant Cambrian ages from oscillatory zoned cores and discordant ages ranging from ca. 491–32 Ma in metamict grains. Since these leucogranites clearly post-date the metasedimentary rocks they intrude, the zircons are interpreted as xenocrysts that are probably derived from the Kampa granite. The Kampa Dome formed via a series of progressive orogenic events including regional ~ N–S contraction and related crustal thickening (D1), predominately top-to-N ductile shearing and crustal extension (D2), top-to-N brittle–ductile faulting and related folding on the north limb of the dome, localized top-to-S faulting on the southern limb of the dome, and crustal doming (D3), and continued N–S contraction, E–W extension and doming (D4). Structural and geochronologic variability amongst adjacent North Himalayan gneiss domes may reflect changes in the magnitude of crustal exhumation along the North Himalayan antiform, possibly relating to differences in the mid-crustal geometry of the exhuming fault systems.  相似文献   
5.
东喜马拉雅构造结岩体冷却的40Ar/39Ar年代学研究   总被引:2,自引:1,他引:1  
  相似文献   
6.
The Tso Morari Complex, which is thought to be originally the margin of the Indian continent, is composed of pelitic gneisses and schists including mafic rock lenses (eclogites and basic schists). Eclogites studied here have the mineral assemblage Grt + Omp + Ca-Amp + Zo + Phn + Pg + Qtz + Rt. They also have coesite pseudomorph in garnet and quartz rods in omphacite, suggesting a record of ultrahigh-pressure metamorphism. They occur only in the cores of meter-scale mafic rock lenses intercalated with the pelitic schists. Small mafic lenses and the rim parts of large lenses have been strongly deformed to form the foliation parallel to that of the pelitic schists and show the mineral assemblages of upper greenschist to amphibolite facies metamorphism. The garnet–omphacite thermometry and the univariant reaction relations for jadeite formation give 13–21 kbar at 600 °C and 16–18 kbar at 750 °C for the eclogite formation using the jadeite content of clinopyroxene (XJd = 0.48).

Phengites in pelitic schists show variable Si / Al and Na / K ratios among grains as well as within single grains, and give K–Ar ages of 50–87 Ma. The pelitic schist with paragonite and phengite yielded K–Ar ages of 83.5 Ma (K = 4.9 wt.%) for paragonite–phengite mixture and 85.3 Ma (K = 7.8 wt.%) for phengite and an isochron age of 91 ± 13 Ma from the two dataset. The eclogite gives a plateau age of 132 Ma in Ar/Ar step-heating analyses using single phengite grain and an inverse isochron age of 130 ± 39 Ma with an initial 40Ar / 36Ar ratio of 434 ± 90 in Ar/Ar spot analyses of phengites and paragonites. The Cretaceous isochron ages are interpreted to represent the timing of early stage of exhumation of the eclogitic rocks assuming revised high closure temperature (500 °C) for phengite K–Ar system. The phengites in pelitic schists have experienced retrograde reaction which modified their chemistry during intense deformation associated with the exhumation of these rocks with the release of significant radiogenic 40Ar from the crystals. The argon release took place in the schists that experienced the retrogression to upper greenschist facies metamorphisms from the eclogite facies conditions.  相似文献   

7.
8.
A structural transect in the Lower Dolpo highlights that the deformation and metamorphism of the Tibetan Zone (TZ) increase toward the bottom of the sequence. The contact with the underlying HHC is marked by a metamorphic jump from amphibolite facies in the carbonatic rocks of the upper part of the HHC to greenschist facies marbles in the TZ. Moreover, the HHC and the TZ show different metamorphic histories. The contact zone shows a strain increase accompanied by asymmetric folds with a top-to-the-northeast vergence, connected to a down-to-the-northeast tectonic transport. The contact is interpreted as an extensional shear zone, connected to the South Tibetan Detachment System. To cite this article: R. Carosi et al., C. R. Geoscience 334 (2002) 933–940.  相似文献   
9.
The paper records evidences of neotectonic activities in the Gangotri glacier valley that are found to be responsible for the present-day geomorphic set-up of the area since the last phase of major glaciation. Geomorphological features indicate the presence of a large glacier in the valley in the geological past. Prominent planar structures present in the rocks were later on modified into sets of normal faults in the present-day Himalayan tectonic set-up giving rise to graben structures. The block nearest the snout is traversed by the NW-SE trending Gaumukh fault. A number of terraces mark the entrenchment of Bhagirathi River in this part. The contrasting drainage morphometric parameters of two sides of the valley and asymmetric recessional patterns of the tributary glaciers further document movement along the fault. The distribution and orientation of debris fans also seem to be controlled by neotectonic activity. The neotectonic activity that followed the process of deglaciation has brought the glacially carved, wide U- shaped valley in contact with the present-day fluvially incised narrow and relatively deep valley. The wider segments have become sites of active deposition of glacially eroded debris. The low gradient and excessive filling has resulted in the river attaining a braided nature in these segments.  相似文献   
10.
Glacial Lake Outburst Floods in the Nepal Himalaya: A Manageable Hazard?   总被引:1,自引:0,他引:1  
Within the past fifteen years, glacial lake outburst floods have become an activetopic of discussion within the development community focused on Nepal. Suchfloods endanger thousands of people, hundreds of villages, and basic infrastructuresuch as trails and bridges. The flood risk is also a major impediment to hydroelectricdevelopment in several river basins. Unlike most other mountain hazards in Nepal,reducing the possibility of outburst floods is technically feasible. The first attemptwithin Nepal to reduce the hazard of one lake by artificially lowering its water levelwas partially completed in June 2000. Completing this task and beginning work onother hazardous lakes will require difficult decisions about risk by downstream residentsand substantial investment from the international aid community.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号