首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   70篇
  免费   4篇
  国内免费   11篇
大气科学   16篇
地球物理   8篇
地质学   28篇
海洋学   6篇
天文学   19篇
综合类   4篇
自然地理   4篇
  2020年   2篇
  2019年   3篇
  2018年   2篇
  2017年   3篇
  2016年   1篇
  2015年   1篇
  2013年   2篇
  2012年   2篇
  2011年   5篇
  2010年   9篇
  2009年   6篇
  2008年   3篇
  2007年   3篇
  2006年   2篇
  2004年   3篇
  2003年   1篇
  2002年   5篇
  2001年   3篇
  2000年   1篇
  1999年   4篇
  1998年   2篇
  1997年   1篇
  1995年   3篇
  1994年   4篇
  1993年   2篇
  1991年   2篇
  1990年   1篇
  1989年   3篇
  1987年   1篇
  1986年   1篇
  1984年   1篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
排序方式: 共有85条查询结果,搜索用时 296 毫秒
1.
Oxygen isotope signatures of ruby and sapphire megacrysts, combined with trace-element analysis, from the Mbuji-Mayi kimberlite, Democratic Republic of Congo, and the Changle alkali basalt, China, provide clues to specify their origin in the deep Earth. At Mbuji-Mayi, pink sapphires have δ18O values in the range 4.3 to 5.4‰ (N = 10) with a mean of 4.9 ± 0.4‰, and rubies from 5.5 to 5.6‰ (N = 3). The Ga/Mg ratio of pink sapphires is between 1.9 and 3.9, and in rubies, between 0.6 and 2.6. The blue or yellow sapphires from Changle have δ18O values from 4.6 to 5.2 ‰, with a mean of 4.9 ± 0.2‰ (N = 9). The Ga/Mg ratio is between 5.7 and 11.3. The homogenous isotopic composition of ruby suggests a derivation from upper mantle xenoliths (garnet lherzolite, pyroxenite) or metagabbros and/or lower crustal garnet clinopyroxenite eclogite-type xenoliths included in kimberlites. Data from the pink sapphires from Mbuji-Mayi suggest a mantle origin, but different probable protoliths: either subducted oceanic protolith transformed into eclogite with δ18O values buffered to the mantle value, or clinopyroxenite protoliths in peridotite. The Changle sapphires have a mantle O-isotope signature. They probably formed in syenitic magmas produced by low degree partial melting of a spinel lherzolite source. The kimberlite and the alkali basalt acted as gem conveyors from the upper mantle up to the surface.  相似文献   
2.
3.
三种海洋硅藻胞外多聚物形态、微细结构及组成的初步研究   总被引:10,自引:1,他引:10  
利用光镜和扫描电镜对厦门近海三种常见附着硅藻——爪哇曲壳藻亚缢变种(Achnanthes javanica var.subconstricta)、咖啡形双眉藻(Amphora coffeaeformis)和多枝舟形藻(Nav-icula ramosissima)胞外多聚物(Extracellular polymeric substances,EPSs)的形态和微细结构进行了研究,并初步分析了其化学组成。结果表明,A.javanica var.subconstricta的胞外多聚物为透明的长柄,分为领、柄及垫状物三部分,电镜显示其徽细结构为由许多纤维组成的双层实心管;Amphora coffeaeformis分泌的EPS为由串连的小节组成的实心管状结构,许多管交织成厚的胶质块;Navicula ramosissima的EPSs则为透明的薄膜并形成胶质膜。三种硅藻胞外多聚物的水溶性和水不溶性的主要成分均为多糖类,达总量的70%以上,蛋白质含量次之.不含脂类物质,但不同藻类EPS的组成差异较大。此外,还探讨了EPSs的功能及其分泌机理。  相似文献   
4.
Over an oceanic peatland, the concentration of Na in fog averaged 38.1 mgl?1 compared with 1.8 mgl?1 in rain, resulting in a significant flux of mineral elements to the surface. Between 16 May and 20 June 1990 the average mass flux of Na to the bog surface by fog, rain, and dry deposition was 21.9, 10.4 and 7.0 mg m?2 d?1. There was little long-term storage of Na within the peatland system, where Na losses measured in stream runoff averaged 34.8 mg m2 d?1, and deep groundwater losses 4 mg m?2 d?1. Calcium and Mg were preferentially retained in the organic soil, whereas K was relatively mobile. Potassium tended to become concentrated in the unsaturated zone. Stream runoff had a consistently higher pH than groundwater, corresponding to higher Ca and Mg concentrations, which may have been from mineral sources in the headwater ponds. Otherwise, the stream water chemistry was closely related to groundwater in the upper layers of the peat deposit.  相似文献   
5.
The kinetics of the reactions of C2H radical with ethane (k1), propane (k2), and n-butane (k3) are studied over the temperature range of T = 96-296 K with a pulsed Laval nozzle apparatus that utilizes a pulsed laser photolysis-chemiluminescence technique. The C2H decay profiles in the presence of both the alkane reactant and O2 are monitored by the CH(A2Δ) chemiluminescence tracer method. The results, together with available literature data, yield the following Arrhenius expressions: k1(T) = (0.51 ± 0.06) × 10−10 exp[(−76 ± 30)K/T] cm3 molecule−1 s−1 (T = 96-800 K), k2(T) = (0.98 ± 0.32) × 10−10exp[(−71 ± 60)K/T] cm3 molecule−1 s−1 (T = 96-361 K), and k3(T) = (1.23 ± 0.26) × 10−10 cm3 molecule−1 s−1 (T = 96-297 K). At T = 296 K, k1 is measured as a function of total pressure and has little or no pressure dependence. The results from this work support a direct hydrogen abstraction mechanism for the title reactions. Implications to the atmospheric chemistry of Titan are discussed.  相似文献   
6.
An assessment is made of the relative contribution of certain classes of energetic particle precipitation to the chemical composition of the middle atmosphere with emphasis placed on the production of odd nitrogen and odd hydrogen species and their subsequent role in the catalytic removal of ozone. Galactic cosmic radiation is an important source of odd nitrogen in the lower stratosphere but since the peak energy deposition occurs below the region where catalytic removal of O3 is most effective, it is questionable whether this mechanism is important in the overall terrestrial ozone budget. The precipitation of energetic solar protons can periodically produce dramatic enhancement in upper stratospheric NO. The long residence time of NO in this region of the atmosphere, where catalytic interaction with O3 is also most effective, mandates that this mechanism be included in future modelling of the global distribution of O3. Throughout the mesosphere the precipitation of energetic electrons from the outer radiation belt (60°70°) can sporadically act as a major local source of odd hydrogen and odd nitrogen leading to observable O3 depletion. Future satellite studies should be directed at simultaneously measuring the precipitation flux and the concomitant atmosphere modification, and these results should be employed to develop more sophisticated models of this important coupling.  相似文献   
7.
Samples were collected from two snowpits in Baishui glacier no. 1, Mt Yulong, China, in May 2006. Snowpit chemistry was studied, using ion tracer techniques, HYSPLIT model, factor analysis, correlation and trend analysis. It indicated that total cation concentration is higher in 4,900-m snowpit than in 4,750-m snowpit, whereas total anion concentration is higher in 4,750-m snowpit. Cations, especially Ca2+, dominate ionic concentrations in Baishui glacier no. 1. According to correlation analysis and factor analysis, ions can be categorized as follows: Cl and NO3 as Group 1, SO4 2− as Group 2, Mg2+ and Ca2+ as Group 3, Na+ as Group 4, K+ as Group 5. Contribution made by terrestrial dust to ionic concentration accounts for 52.27, 100, 99.36, 98.91, 96.16 and 99.97% of Cl, NO3 , SO4 2−, K+, Mg2+ and Ca2+, respectively, in 4,900-m snowpit, and for 64.00, 100, 99.57, 98.63, 96.25 and 99.97% in 4,750-m snowpit. Local dust is the principal source of snowpit chemical components. Pollutants brought from industrial areas of South Asia, Southeast Asia and South China by monsoonal circulation also makes some contribution to anion concentrations, but pollution associated with human activities makes a very slight contribution in study area. The chemical characteristics of two snowpits are different owing to the difference of deposition mechanism and local environment in different altitudes.  相似文献   
8.
Gold mineralization at Chah Zard, Iran, is mostly concentrated in breccia and veins, and is closely associated with pyrite. Optical and scanning electron microscopy-backscattered electron observations indicate four different pyrite types, each characterized by different textures: porous and fractured py1, simple-zoned, oscillatory-rimmed, framboidal and fibrous py2, colloform py3, and inclusion-rich py4. Laser ablation ICP–MS analysis and elemental mapping reveal the presence of invisible gold in all pyrite types. The highest concentrations (161–166 ppm Au) are found in py2 and py4, which correlate with the highest As concentrations (73,000–76,000 ppm). In As-poor grains, Au concentrations decrease by about two orders of magnitude. Copper, Pb, Zn, Te, Sb, and Ag occur with invisible gold, suggesting that at least part of the gold occurs in nanoparticles of sulfosalts of these metals and metalloids. Gold distribution patterns suggest that only negligible Au was originally trapped in py1 from the initial ore fluids. However, most, if not all, Au was transported and deposited during subsequent overprinting hydrothermal fluid flow in overgrowth rims around the margins of the py2 and within microfractures of py4 grains. Oscillatory zonation patterns for Co, Ni, Sb, Cu, Pb, and Ag in pyrite reflect fluctuations in the hydrothermal fluid chemistry. The LA-ICP–MS data reveal that Cu, Pb and Ag show systematic variations between different pyrite types. Thus, Cu/Pb and Pb/Ag ratios in pyrite may provide a potentially powerful exploration vector to epithermal gold mineralization at Chah Zard district and elsewhere.  相似文献   
9.
M.L. Delitsky  C.P. McKay 《Icarus》2010,207(1):477-484
The Cassini spacecraft detected benzene high in Titan’s atmosphere as well as the presence of large mass positive and negative ions. Previous work has suggested that these large mass ions could be composed of fused-ring polycyclic aromatic hydrocarbon compounds. These fused-ring PAHs, such as naphthalene and anthracene, are usually the result of high temperature processes that may not occur in Titan’s thin, cold, upper thermosphere. Here we suggest that a different class of aromatic compounds, polyphenyls, may be a better explanation of the data. Polyphenyls can grow to be large polymeric structures and could condense to form the aerosols seen in Titan’s cloud and hazes. They have similar properties to fused-ring PAHs (for example, electron affinity, ionization potential) and could be the negative ion species seen in the CAPS instrument data from the Cassini spacecraft.  相似文献   
10.
First measurements of SO2 and SO in the Venus mesosphere (70-100 km) are reported. This altitude range is distinctly above the ∼60-70 km range to which nadir-sounding IR and UV investigations are sensitive. Since July 2004, use of ground-based sub-mm spectroscopy has yielded multiple discoveries. Abundance of each molecule varies strongly on many timescales over the entire sub-Earth Venus hemisphere. Diurnal behavior is evident, with more SO2, and less SO, at night than during the day. Non-diurnal variability is also present, with measured SO2 and SO abundances each changing by up to 2× or more between observations conducted on different dates, but at fixed phase, hence identical sub-Earth Venus local times. Change as large and rapid as a 5σ doubling of SO on a one-week timescale is seen. The sum of SO2 and SO abundances varies by an order of magnitude or more, indicating at least one additional sulfur reservoir must be present, and that it must function as both a sink and source for these molecules. The ratio SO2/SO varies by nearly two orders of magnitude, with both diurnal and non-diurnal components. In contrast to the strong time dependence of molecular abundances, their altitude distributions are temporally invariant, with far more SO2 and SO at 85-100 km than at 70-85 km. The observed increase of SO2 mixing ratio with altitude requires that the primary SO2 source be upper mesospheric photochemistry, contrary to atmospheric models which assert upward transport as the only source of above-cloud SO2. Abundance of upper mesospheric aerosol, with assumption that it is composed primarily of sulfuric acid, is at least sufficient to provide the maximum gas phase (SO + SO2) sulfur reported in this study. Sulfate aerosol is thus a plausible source of upper mesospheric SO2.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号