首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
大气科学   1篇
  1999年   1篇
排序方式: 共有1条查询结果,搜索用时 0 毫秒
1
1.
The total ozone reduction in the Arctic during the winters of 1993/94 and 1994/95 has been evaluated using the ground-based total ozone measurements of five SAOZ spectrometers distributed in the Arctic and from number density profiles of a balloon-borne version of the instrument. The ozone change resulting from transport has been removed using a 3D Chemistry Transport Model (CTM) run without chemistry. A cumulative total ozone depletion at the end of winter in March of 18% ± 4% in 1994 and of 32% ± 4% in 1995 was observed within the polar vortex, and of 15% ± 4% in both years outside the vortex. This evaluation is not sensitive to the vertical transport in the model. The periods, locations and altitudes at which ozone loss occurred were tightly connected to temperatures lower than NAT condensation temperature. The maximum loss was observed at 50 hPa in 1994 and lower, 60-80 hPa, in 1995. Half of the depletion in 1994 and three quarters in 1995 occurred during the early winter, showing that a late final warming is not a prerequisite for large ozone destruction in the northern hemisphere. The timing, the geographical location and the altitude of the ozone losses are well captured by the 3D CTM photochemical model using current chemistry, but its amplitude at low sun during the early winter, is underestimated. The model simulations also capture the early season reductions observed outside the vortex. This suggests that the losses occurred in situ in the early winter, when low temperatures are frequent, and not later in March, when ozone is most reduced inside the vortex, which would be the case if leakage from the vortex was the cause of the depletion.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号