首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   58篇
  免费   8篇
  国内免费   10篇
地球物理   13篇
地质学   26篇
海洋学   35篇
综合类   2篇
  2019年   2篇
  2018年   2篇
  2017年   5篇
  2016年   1篇
  2014年   5篇
  2013年   3篇
  2012年   3篇
  2011年   5篇
  2010年   5篇
  2009年   3篇
  2008年   8篇
  2007年   2篇
  2006年   8篇
  2005年   7篇
  2004年   8篇
  2003年   4篇
  2002年   3篇
  2001年   1篇
  2000年   1篇
排序方式: 共有76条查询结果,搜索用时 15 毫秒
1.
南海北部陆坡深水区的浅层天然气藏是一种伴随天然气水合物的新型油气藏, 具有埋藏浅、规模大的特点, 其埋藏深度一般小于300m。浅层天然气藏由深部裂解气沿断裂上升被天然气水合物封盖而形成, 识别似海底反射(BSR)是寻找浅层天然气藏有效方法。浅层天然气藏的气源主要有热解气、生物气和混合气, 陆坡张性断裂是气体运移的主要通道, 水合物下部的砂层是浅层天然气藏的主要储集层, 水合物层则是封盖层。从南海发现的天然气水合物分布特征看, 浅层天然气藏在陆坡深水区广泛分布且气藏厚度大, 潜在资源量非常可观, 是一种新型的开采成本相对低廉的油气藏。  相似文献   
2.
Using the collected 433 heat flow values, we estimated the bases of methane hydrate stability zone (BHSZ), in northern South China Sea (NSCS). Through comparing BHSZs with the depths of bottom simulating reflectors (BSRs), in Shenhu Area (SA), we found that there are big differences between them. In the north of SA, where the water depth is shallow, many slumps developed and the sedimentation rate is high, it appears great negative difference (as large as -192%). However, to the southeast of SA, where the water depth is deeper, sedimentation rate is relatively low and uplift basement topography exists, it changes to positive difference (as large as +45%). The differences change so great, which haven’t been observed in other places of the world. After considering the errors from the process of heat flow measurement, the BSR depth, the relationship of thermal conductivity with the sediments depth, and the fluid flow activities, we conclude that the difference should be not caused by these errors. Such big disagreement may be due to the misunderstanding of BSR. The deviant “BSRs” could represent the paleo-BSRs or just gas-bearing sediment layers, such as unconformities or the specific strata where have different permeability, which are not hydraterelated BSRs.  相似文献   
3.
Herein we would like to comment on the paper "Estimation of potential distribution of gas hydrate in the northern South China Sea" by Wang et al. 2010 in Chinese Journal of Oceanology and Limnology, 28(3): 693-699. The purpose of this comment is to point out that the given probabilities of gas hydrate occurrence in the northern Zhujiang Mouth Basin and the Yinggehai Basin in the figure of Wang et al. (2010) are improper. After introducing our work of estimation of gas hydrate stability distribution in the northern South China Sea, we suggest that Wang et al. (2010) dismissed the basic P-T rule for the existence of gas hydrate. They should consider more the variables of water depth, seabed temperature and geothermal gradient in their gas hydrate distribution model in future studies.  相似文献   
4.
Increased oil and gas exploration activity has led to a detailed investigation of the continental shelf and adjacent slope regions of Mahanadi, Krishna–Godavari (KG) and Cauvery basins, which are promising petroliferous basins along the eastern continental margin of India. In this paper, we analyze the high resolution sparker, subbottom profiler and multibeam data in KG offshore basin to understand the shallow structures and shallow deposits for gas hydrate exploration. We identified and mapped prominent positive topographic features in the bathymetry data. These mounds show fluid/gas migration features such as acoustic voids, acoustic chimneys, and acoustic turbid layers. It is interesting to note that drilling/coring onboard JOIDES in the vicinity of the mounds show the presence of thick accumulation of subsurface gas hydrate. Further, geological and geochemical study of long sediment cores collected onboard Marion Dufresne in the vicinity of the mounds and sedimentary ridges shows the imprints of paleo-expulsion of methane and sulfidic fluid from the seafloor.  相似文献   
5.
We use a simple approach to estimate the present-day thermal regime along the northwestern part of the Western Indian Passive Margin, offshore Pakistan. A compilation of bottom borehole temperatures and geothermal gradients derived from new observations of bottom-simulating reflections (BSRs) allows us to constrain the relationship between the thermal regime and the known tectonic and sedimentary framework along this margin. Effects of basin and crustal structure on the estimation of thermal gradients and heat flow are discussed. A hydrate system is located within the sedimentary deep marine setting and compared to other provinces on other continental margins. We calculate the potential radiogenic contribution to the surface heat flow along a profile across the margin. Measurements across the continental shelf show intermediate thermal gradients of 38–44 °C/km. The onshore Indus Basin shows a lower range of values spanning 18–31 °C/km. The Indus Fan slope and continental rise show an increasing gradient from 37 to 55 °C/km, with higher values associated with the thick depocenter. The gradient drops to 33 °C/km along the Somnath Ridge, which is a syn-rift volcanic construct located in a landward position relative to the latest spreading center around the Cretaceous–Paleogene transition.  相似文献   
6.
海洋天然气水合物的地震识别方法研究   总被引:21,自引:2,他引:21  
天然气水合物作为21世纪新的自然能源将为人类的生存发展服务。20世纪60年代证实,俄罗斯西伯利亚的麦索亚哈气田为典型的天然气水合物形成的气田,70年代又在海底发现了固体天然气水合物岩样。1971年,RStoll首先将地震剖面中的似海底反向层解释为海洋天然气水合物存在的标志,后来被深海钻探证实,从此地震方法成为大面积研究天然气水合物的重要手段。天然气水合物既是潜在能源,也是影响环境和形成灾害的因素之一,因此,研究天然气水合物是人类在21世纪的重要课题。探讨海洋天然气水合物的地震识别方法,由于这项工作刚刚起步,还没有做出具体的成果,在此只能根据我们仅有的工作和参照国外分开的出版物,以及出国访问得到的有关资料进行分析,提出我们的一些基本设想,与各位专家探讨。  相似文献   
7.
冲绳海槽天然气水合物BSR的地震研究   总被引:8,自引:0,他引:8       下载免费PDF全文
根据多道地震反射资料分析,在冲绳海槽南部和中部发现了拟海底反射层(BSR)现象。通过对海底异常反射层的振幅特征、速度异常和AVO属性分析,说明该BSR可能反映了天然气水合物的存在,并发现冲绳海槽断层与天然气水合物的形成有密切关系。  相似文献   
8.
经过对"探宝号"调查船在2001年8月在南海东北部陆坡及台湾南部恒春海脊海域采集的多道地震剖面资料进行的地震反射波数据分析、研究和解释,结果表明:(1)南海东北部陆坡段区域和台湾南部恒春海脊海域地震剖面上均显示有被作为天然气水合物存在标志的BSR,但两区域构造成因、形式和相关地质环境的不同造成了此两处的天然气水合物成因及过程的不同.(2)南海东北部陆坡区域的水合物形成与该区广泛发育的断裂带、滑塌构造体及其所形成的压力场屏蔽环境有关,而台湾南部恒春海脊海域的天然气水合物的形成则与马尼拉海沟俯冲带相关的逆冲推覆构造、增生楔等及其所对应的海底流体疏导体系有关.(3)南海陆缘区域广泛发育有各种断裂带、滑塌构造体、泥底辟、俯冲带、增生楔等,且温压环境合适,是天然气水合物矿藏极有可能广泛分布的区域.  相似文献   
9.
Existence of gas-hydrate in the marine sediments elevates both the P- and S-wave seismic velocities, whereas even a small amount of underlying free-gas decreases the P-wave velocity considerably and the S-wave velocity remains almost unaffected. Study of both P- and S-wave seismic velocities or their ratio (VP/VS) for the hydrate-bearing sediment provides more information than that obtained by the P- or S-wave velocity alone for the quantitative assessment of gas-hydrate. We estimate the P- and S-wave seismic velocities across a BSR (interface between gas-hydrate and free-gas bearing sediments) using the travel time inversion followed by a constrained AVA modeling of multi channel seismic (MCS) data at two locations in the Makran accretionary prism. Using this VP/VS ratio, we then quantify the amount of gas-hydrate and free-gas based on two rock-physics models. The result shows an estimate of 12–14.5% gas-hydrate and 4.5–5.5% free-gas of the pore volume based on first model, and 13–20% gas-hydrate and 3–3.5% free-gas of the pore volume based on the second model, respectively.  相似文献   
10.
Gas occurrences consisting of carbon dioxide (CO2), hydrogen sulfide (H2S), and hydrocarbon (HC) gases and oil within the Dodan Field in southeastern Turkey are located in Cretaceous carbonate reservoir rocks in the Garzan and Mardin Formations. The aim of this study was to determine gas composition and to define the origin of gases in Dodan Field. For this purpose, gas samples were analyzed for their molecular and isotopic composition. The isotopic composition of CO2, with values of −1.5‰ and −2.8‰, suggested abiogenic origin from limestone. δ34S values of H2S ranged from +11.9 to +13.4‰. H2S is most likely formed from thermochemical sulfate reduction (TSR) and bacterial sulfate reduction (BSR) within the Bakuk Formation. The Bakuk Formation is composed of a dolomite dominated carbonate succession also containing anhydrite. TSR may occur within an evaporitic environment at temperatures of approximately 120–145 °C. Basin modeling revealed that these temperatures were reached within the Bakuk Formation at 10 Ma. Furthermore, sulfate reducing bacteria were found in oil–water phase samples from Dodan Field. As a result, the H2S in Dodan Field can be considered to have formed by BSR and TSR.As indicated by their isotopic composition, HC gases are of thermogenic origin and were generated within the Upper Permian Kas and Gomaniibrik Formations. As indicated by the heavier isotopic composition of methane and ethane, HC gases were later altered by TSR. Based on our results, the Dodan gas field may have formed as a result of the interaction of the following processes during the last 7–8 Ma: 1) thermogenic gas generation in Permian source rocks, 2) the formation of thrust faults, 3) the lateral-up dip migration of HC-gases due to thrust faults from the Kas Formation into the Bakuk Formation, 4) the formation of H2S and CO2 by TSR within the Bakuk Formation, 5) the vertical migration of gases into reservoirs through the thrust fault, and 6) lateral-up dip migration within reservoir rocks toward the Dodan structure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号