首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   4篇
  国内免费   3篇
地球物理   9篇
地质学   5篇
海洋学   16篇
  2020年   1篇
  2017年   2篇
  2015年   1篇
  2014年   3篇
  2013年   1篇
  2012年   3篇
  2011年   2篇
  2010年   2篇
  2009年   2篇
  2008年   2篇
  2007年   1篇
  2005年   2篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  1999年   1篇
  1993年   4篇
排序方式: 共有30条查询结果,搜索用时 78 毫秒
1.
于1989年1月—1989年8月采用连续培养和半连续培养方法进行了伪矮海链藻细胞分裂、叶绿素α含量和活体荧光特性与光、营养盐关系的研究。结果表明,细胞分裂、活体荧光、叶绿素α均呈现光照期的增长速率明显高于黑暗期的增长速率的日变化规律,荧光增强比则在光照期开始后或黑暗期结束时出现最高值;光强和营养盐不仅影响各指标日变化的幅度,而且还可改变荧光增强比峰值出现时间。因此,在研究细胞分裂、叶绿素α和荧光特性的昼夜节律时,必须考虑光和营养盐这两个重要因素。  相似文献   
2.
The Peruvian anchovy or anchoveta (Engraulis ringens) forages on plankton and is a main prey for marine mammals, seabirds, fish, and fishers, and is therefore a key element of the food web in the Humboldt Current system (HCS). Here, we present results from the analysis of 21,203 anchoveta stomach contents sampled during 23 acoustic surveys over the period 1996–2003. Prey items were identified to the genus level, and the relative dietary importance of different prey was assessed by determination of their carbon content. Variability in stomach fullness was examined relative to the diel cycle, the distance from the coast, sea surface temperature, and latitude, using generalized additive models (GAMs). Whereas phytoplankton largely dominated anchoveta diets in terms of numerical abundance and comprised >99% of ingested prey items, the carbon content of prey items indicated that zooplankton was by far the most important dietary component, with euphausiids contributing 67.5% of dietary carbon followed by copepods (26.3%). Stomach fullness data showed that anchoveta feed mainly during daytime between 07h00 and 18h00, although night-time feeding also made a substantial contribution to total food consumption. Stomach fullness also varied with latitude, distance from the coast, and temperature, but with substantial variability indicating a high degree of plasticity in anchoveta feeding behaviour. The results suggest an ecological role for anchoveta that challenges current understanding of its position in the foodweb, the functioning of the HCS, and trophic models of the HCS.  相似文献   
3.
Long‐term monitoring of changes in dissolved oxygen (DO) and pH is of great importance to quantifying aquatic ecosystem metabolism, particularly for lakes under the changing global environment. During 173 days, diel DO cycles were measured in situ along with the main driving variables of pH, wind speed (WS), and net solar radiation (Rn) in a temperate shallow lake. Best‐fit multiple non‐linear regression (MNLR) models of diel DO time series were built and validated on a monthly basis, with R2 values ranging from 42.4% in September to 95.4% in November for validation. The strong relationship between diel DO and pH (r = 0.6) appeared to be related to the patterns of ecosystem productivity and respiration, and sensitivity of decomposing bacteria to changes in pH. pH‐driven lake metabolism appears to have significant implications for diel and seasonal lake metabolism in a changing global environment.  相似文献   
4.
Whether carbonate weathering could produce a stable carbon sink depends primarily on the utilization of dissolved inorganic carbon (DIC) by aquatic phototrophs (the so-called Biological Carbon Pump-BCP effect). On this basis, water temperature (T), pH, electrical conductivity (EC) and dissolved oxygen (DO) were synchronously monitored at 15-min resolution for one and two days respectively in January and October 2013 in Maolan Spring and the spring-fed midstream and downstream ponds in Maolan Nature Reserve, China. A thermodynamic model was used to link the continuous data to allow calculation of CO2 partial pressures (pCO2) and calcite saturation indexes (SIC). A floating static chamber was placed on the water surface successively at all sites to quantify CO2 exchange flux between atmosphere and water so as to evaluate the BCP effect. Results show that, in both winter and autumn, remarkable diel variations of hydrochemical parameters were present in the midstream pond where DO, pH, and SIC increased in the day and decreased during the night while EC, [HCO3], [Ca2+] and pCO2 showed inverse changes mainly due to the metabolic processes of the flourishing submerged plants, with photosynthesis dominating in the day and respiration dominating at night. However, hydrochemical parameters in the spring and downstream pond show less change since few submerged plants developed there. It was determined that the BCP effect in the midstream pond was 285 ± 193 t C km−2 a−1 in winter and 892 ± 300 t C km−2 a−1 in autumn, indicating a potential significant role of terrestrial aquatic photosynthesis in stabilizing the carbonate weathering-related carbon sink.  相似文献   
5.
Myctophids are among the most abundant fishes in the world׳s ocean and occupy a key position in marine pelagic food webs. Through their significant diel vertical migrations and metabolism they also have the potential to be a significant contributor to carbon export. We investigated the feeding ecology and contribution to organic carbon export by three myctophid species, Benthosema glaciale, Protomyctophum arcticum, and Hygophum hygomii, from a structurally and ecologically unique ecosystem- the Mid-Atlantic Ridge (MAR). Similar to the results of previous studies, the diet of these fishes was primarily copepods and euphausiids, however, gelatinous zooplankton was identified in the diet of B. glaciale for the first time. Ridge section and time of day were significant explanatory variables in the diet of B. glaciale as determined by canonical correspondence analysis, while depth was the only significant explanatory variable in the diet of P. arcticum. Daily consumption by MAR myctophids was less than 1% of dry body weight per day and resulted in the removal of less than 1% of zooplankton biomass daily. Although lower than previous estimates of carbon transport by myctophids and zooplankton in other areas, MAR myctophid active transport by diel vertical migration was equivalent to up to 8% of sinking particulate organic carbon in the North Atlantic. While highly abundant, myctophids do not impart significant predation pressure on MAR zooplankton, and play a modest role in the active transport of carbon from surface waters.  相似文献   
6.
We compared wintertime depth distributions of the mesozooplankton community and dominant copepods between the subtropical (S1) and subarctic (K2) Pacific Oceans to evaluate the relative importance of actively transported carbon by vertical migrants to sinking particulate organic carbon flux. Primary production was higher and the ratio of sinking particulate organic carbon flux to primary production was lower at S1 compared with those at K2. The mesozooplankton community was lower in abundance and biomass at S1 compared to K2. Copepods were the dominant group among both mesozooplankton abundance and biomass throughout the water column down to 1000 m at both sites. The depth distribution showed that diel vertical migration was obvious for the mesozooplankton abundance and biomass at S1 but was not apparent for the abundance at K2, because the dominant component was diurnally migrating species at S1 and overwintering species residing at mesopelagic depths at K2. The major components of diel migrants were copepods and euphausiids at S1 and only euphausiids at K2. Respiratory flux by the diurnally migrating mesozooplankton was estimated to be 2 mgC m−2 day−1 at S1 and 7 mgC m−2 day−1 at K2. The respiratory flux was equivalent to 131% of sedimentary fecal pellet flux at S1 and 136% of that at K2. Because pathways of downward carbon flux are facilitated by the mesozooplankton community, the actively transported carbon (respiration of dissolved inorganic carbon, excretion of dissolved organic carbon and egestion of fecal pellets at depth) might be larger during winter than the flux of sinking fecal pellets.  相似文献   
7.
Life history, habitat utilisation, and biomass of benthic and pelagic opossum shrimp (Mysis relicta) were studied in the oligotrophic Lake Jonsvatn, central Norway. Sampling in the pelagic zone was done by means of a closing zooplankton net; in the benthic zone by means of a benthic beam trawl.

M. relicta had a mixed one or two year life cycle. In the autumn, the proportion of mature females and males were larger in the pelagic than in the benthic habitat. Copulation took place in late autumn, and the first females with eggs occurred in November. In February, the first juvenile M. relicta were released in the benthic habitat. In May and July, however, juveniles were found in large numbers in all parts of the lake. The length distribution of M. relicta indicates that juveniles partly segregate between benthic and pelagic habitats.

Both juvenile and adult M. relicta performed vertical diel migrations in the pelagic habitat. In the benthic habitat, diel vertical migrations along the bottom were not as pronounced as vertical migrations in the pelagic habitat. In the benthic habitat, major migrations were performed only by adults in the autumn. Our results indicate that the light intensity in the green part of the spectrum gives the proximate cue for regulation of vertical distribution of M. relicta.

The mean total biomass varied between 288 and 1576 kg dry weight, corresponding to 23.2–127.1 mg dry weight m−2 surface area. M. relicta had smallest biomass during late spring/early summer and largest biomass during autumn and early winter. Estimated pelagic biomasses were largest in February, August, October and November, while benthic biomasses were largest in May and July. Estimated biomass of pelagic M. relicta during autumn was approximately 1/10 of the estimated biomass of zooplankton in this lake.  相似文献   

8.
Substantial diel (24-h) cycles in dissolved (0.1-m filtration) metal concentrations were observed during summer low flow, winter low flow, and snowmelt runoff in Prickly Pear Creek, Montana. During seven diel sampling episodes lasting 34–61.5 h, dissolved Mn and Zn concentrations increased from afternoon minimum values to maximum values shortly after sunrise. Dissolved As concentrations exhibited the inverse timing. The magnitude of diel concentration increases varied in the range 17–152% for Mn and 70–500% for Zn. Diel increases of As concentrations (17–55%) were less variable. The timing of minimum and maximum values of diel streamflow cycles was inconsistent among sampling episodes and had little relation to the timing of metal concentration cycles, suggesting that geochemical rather than hydrological processes are the primary control of diel metal cycles. Diel cycles of dissolved metal concentrations should be assumed to occur at any time of year in any stream with dissolved metals and neutral to alkaline pH.Electronic Supplementary Material Supplementary material is available for this article if you access the article at . A link in the frame on the left on that page takes you directly to the supplementary material.  相似文献   
9.
Diurnal water samples were collected simultaneously at four locations along High Ore Creek (Montana, USA), a small stream with near-neutral pH that contains elevated concentrations of Zn, Mn, Cd, and As from abandoned mines near its headwaters. During the same time period, two sets of synoptic samples were collected by workers moving in opposite directions along the stream. Large diurnal fluctuations in Zn concentration were found at three of the 24-h monitoring stations, but not at the outlet to a settling pond. Because the concentrations of Zn were dropping at most locations in the creek during the day (in response to the daily cycle of day-time attenuation and night-time release), the synoptic sampler who moved upstream obtained a data set that led to the conclusion that Zn load increased with distance downstream. The sampler who moved in a downstream direction obtained the opposite results. Thus, failure to take short-term diurnal cycling into account can lead to incorrect conclusions regarding spatial or temporal trends in water quality within a watershed.  相似文献   
10.
Diel variation in dissolved organic carbon (DOC) within lotic systems has been reported on numerous occasions. However, to our knowledge there has been no published work on diel DOC variation within lowland rivers during high flow events. We sampled DOC at 4 h intervals from two sites across two distinct flow regimes in the regulated lower Namoi River, Australia. This included a large flood (mean flow 224 m3 s−1 and a peak flow of 376 m3 s−1) sampled every 4 h for 10 consecutive days. DOC concentrations were significantly greater at night than during the day (P < 0.05) and the mean DOC concentration was 23.4 mg L−1 at night compared to 18.9 mg L−1 during daylight hours. The magnitude and duration of flow within this lowland river system and the mobilisation of large quantities of allochthonous carbon appeared to play a role in increasing DOC concentration and the diel difference.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号