首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   1篇
  国内免费   1篇
地球物理   1篇
地质学   4篇
海洋学   1篇
  2015年   1篇
  2011年   2篇
  2006年   1篇
  2005年   1篇
  2002年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
南沙地块内破裂不整合与碰撞不整合的构造分析   总被引:2,自引:2,他引:0       下载免费PDF全文
廷贾断裂以东的南沙地块与南海北部陆缘共轭,因此其构造过程研究对认识整个南海的构造演化具有重要意义.地震资料和区域构造背景分析揭示,破裂不整合面(BU)和碰撞不整合面(CU)是控制南沙地块内盆地演化的骨架界面;为了揭示南沙地块内的主要构造过程,本文利用地震剖面分析和数值模拟的方法,侧重对两个重要界面开展构造分析.结果显示...  相似文献   
2.
Whether the formation of the isolated sand body deposition in the forebulge area of a foreland basin system is structure- or deposition-controlled has puzzled geologists for decades, although sand body deposition is generally believed to be indicative of the position of the flexural forebulge in a foreland basin. The formation of a modern sand body in the forebulge area is thus examined by multi-scale geophysical observations based on combined reflection seismic profiles and compressed high-intensity radar pulse (CHIRP) profiles across the sand deposition along the forebulge of the Western Taiwan Foreland Basin (WTFB), which is a Late Miocene-present foreland basin in the overfilled stage. These profiles suggest that the accumulation of the sand deposits along the forebulge of the WTFB is not directly associated with forebulge faultings. The relief map of the forebulge deposit substratum shows a northwestward tilting slope, and the isopach of the forebulge sand body indicates that a large part of the sand body accumulated along the axis of the Taiwan Strait and the subdued forebulge of the WTFB. The difference between the prevailing directions of tidal currents between the Taiwan Strait and the East China Sea reflects the probable sedimentary influence of the cratonward migrating fold-thrust belt within a foreland shelf. We suggest that the formation and distribution of the sand deposits along the forebulge of the WTFB are generally controlled not only by the transverse downslope sedimentation but also longitudinal hydrodynamic processes at distal parts of the foreland basin. Our explanation provides a plausible tectono-sedimentary cause of the sand body deposition in the forebulge area in an overfilled foreland basin. The sedimentary dynamics of the sand body in the Taiwan Strait may be applicable for understanding the formation of isolated sand bodies in the distal part of the Cretaceous Western Interior Foreland Basin.  相似文献   
3.
Mio-Pliocene deposits of the forebulge–backbulge depozones of the Beni-Mamore foreland Basin indicate tidally to fluvially dominated sedimentation. Seven facies assemblages have been recognized: FAA–FAG. FAA represents a distal bottom lake assemblage, FAB and FAD are interpreted as tidal flat deposits, FAC and FAG are interpreted as fluvial systems, FAE sediments are deposited in a subtidal/shoreface setting, and FAG represents a meandering fluvial system. The identification of stratigraphic surfaces (SU, MFS, and MRS) and the relationship among the facies assemblages permit the characterization of several systems tracts: a falling-stage systems tract (FSST) followed by a lowstand systems tract (LST), a transgressive systems tract (TST), and a highstand systems tract (HST). The FSST and LST may have been controlled by the uplift of the Beni-Mamore forebulge, whereas TST may result from a quiescent stage in the forebulge. Subaerial unconformity two (SU2) records the passage from a tide-influenced depositional system to a fully continental depositional system. The Miocene tidal-influenced deposits in the Beni–Mamore Basin suggest that it experienced a connection, either with the South Atlantic Ocean or the Caribbean Sea or both.  相似文献   
4.
Third-order sequence stratigraphic analysis of the Early Permian marine to continental facies of the Karoo Basin provides a case study for the sedimentation patterns which may develop in an underfilled foreland system that is controlled by a combination of supra- and sublithospheric loads. The tectonic regime during the accumulation of the studied section was dominated by the flexural rebound of the foreland system in response to orogenic quiescence in the Cape Fold Belt, which resulted in foredeep uplift and forebulge subsidence. Coupled with flexural tectonics, additional accommodation was created by dynamic loading related to the process of subduction underneath the basin. The long-wavelength dynamic loading led to the subsidence of the peripheral bulge below base level, which allowed for sediment accumulation across the entire foreland system.A succession of five basinwide regressive systems tracts accumulated during the Artinskian (5 My), consisting of foredeep submarine fans and correlative forebulge deltas. The progradation of submarine fans and deltaic systems was controlled by coeval forced and normal regressions of the proximal and distal shorelines of the Ecca interior seaway respectively. The deposition of each regressive systems tract was terminated by basinwide transgressive episodes, that may be related to periodic increases in the rates of long-wavelength dynamic subsidence.  相似文献   
5.
The Iquitos Arch corresponds to a broad topographic high in the Western Amazonia. Morphostructural and geophysical data and flexural modeling show that the Iquitos Arch is the present-day forebulge of the Northwestern Amazonian foreland basin. A detailed tectono-sedimentary study of the Neogene and Quaternary deposits of the Iquitos area has been carried out in order to circumscribe the timing of the forebulge uplift and its environmental consequences. The Neogene and Quaternary sedimentary succession of the Iquitos Arch consists of six formations that evolved from tidal to fluvial environments. The first three formations exhibit Late Miocene gliding features and synsedimentary normal faults. Such soft-sediment deformations bear witness to tectonic activity ascribed to the growth of the forebulge. Regional erosive surfaces that separate the Neogene and Quaternary formations recorded the progressive forebulge emersion and the evolution of Amazonian drainage system. This uplift is related to an increase in tectonic activity within the Andes, which has provoked the eastern propagation of the orogenic wedge and caused an orogenic loading stage in the Amazonian foreland basin system. The emersion of the forebulge induced the retreat of the Pebas “marine megalake” nearby the Iquitos area and consequently caused important environmental changes in the Amazonian basin. From the end of the Late Miocene to the Pliocene, the forebulge acted as a barrier inducing the deposition of fluvial deposits in the forebulge depozone and the deposition of the “White Sand” deposits in the backbulge depozone. Since about 6 Ma, the forebulge is incised and crossed over by the modern Amazon River. The Iquitos forebulge is still growing as shown by the faulted Holocene terrace deposits.  相似文献   
6.
李勇  苏德辰  董顺利  颜照坤  贺佩  闫亮 《岩石学报》2011,27(8):2413-2422
晚三叠世龙门山前陆盆地是在扬子板块西缘被动大陆边缘的基础上由印支造山运动而形成的,盆地中地层充填厚度巨大,包括晚三叠世卡尼期至瑞提期的马鞍塘组、小塘子组和须家河组,持续时间达20Myr,显示为1个以不整合面为界的构造层序。位于晚三叠世龙门山前陆盆地构造层序与下伏古生代-中三叠世被动大陆边缘构造层序之间的不整合面属于龙门山前陆盆地的底部不整合面,标志了扬子板块西缘从被动大陆边缘盆地到前陆盆地的转换。该底部不整合面位于晚三叠世马鞍塘组与中三叠世雷口坡组之间,显示为平行不整合面或角度不整合面,在接触面上发育冲蚀坑、古喀斯特溶沟、溶洞、溶岩角砾、古风化壳的褐铁矿、黏土层及石英、燧石细砾岩等底砾岩。该不整合面向南东方向不断地切削下伏地层,且均发育岩溶风化面,上覆的晚三叠世地层沿不整合面向南东超覆,显示了从整合面到不整合面的变化过程,并随着逆冲楔的推进向南东方向迁移,其超覆线、侵蚀带和相带的走向线与龙门山冲断带的走向大致平行。底部不整合面显示为典型的前陆挠曲不整合面,标志着龙门山前陆盆地的形成和扬子板块西缘挠曲下降和淹没过程,底部为古喀斯特作用面,下部为碳酸盐缓坡和海绵礁建造,上部为进积过程中形成的三角洲沉积物,具有向上变粗的垂向结构,表明底部不整合面和前缘隆起的抬升是扬子板块西缘构造负载的挠曲变形的产物,显示了在卡尼期松潘-甘孜残留洋盆的迅速闭合和逆冲构造负载向扬子板块的推进过程。本次在对晚三叠世龙门山前陆盆地底部不整合面的风化壳、残留厚度、地层缺失、剥蚀厚度、地层超覆等研究的基础上,计算了底部不整合面迁移速率、前缘隆起迁移速率、地层上超速率和前缘隆起的剥蚀速率,并与逆冲楔推进速率进行了对比,结果表明,底部不整合面迁移速率、前缘隆起的迁移速率、地层上超速率均介于3~18mm·a-1之间,其与逆冲楔推进速率(5~15mm·a-1)相似,因此,可用底部不整合面迁移速率、前缘隆起的迁移速率和地层上超速率代表逆冲楔推进速率。但是前缘隆起的剥蚀速率很小,介于0.02~0.08mm·a-1之间,仅为逆冲楔推进速率的1/100。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号