首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28篇
  免费   1篇
  国内免费   2篇
地质学   26篇
海洋学   5篇
  2019年   1篇
  2018年   1篇
  2015年   1篇
  2013年   1篇
  2012年   1篇
  2009年   4篇
  2008年   2篇
  2007年   4篇
  2006年   3篇
  2005年   4篇
  2004年   3篇
  2003年   3篇
  1999年   2篇
  1995年   1篇
排序方式: 共有31条查询结果,搜索用时 109 毫秒
1.
Deep‐water sediments in the Molasse Basin, Austria, were deposited in a narrow foreland basin dominated by a large channel belt located between the steep Alpine fold and thrust belt to the south and the gentler northern slope off the Bohemian Massif. Several gas fields occur outside the channel belt, along the outer bend of a large meander. Accumulation of these overbank sediments reflects a complicated interplay between slope accommodation and debris‐flow and turbidity‐flow interaction within the channel. The tectonically oversteepened northern slope of the basin (ca 2 to 3°) developed a regionally important erosional surface, the Northern Slope Unconformity, which can be traced seismically for >100 km in an east–west direction and >20 km from the channel to the north. The slope preserves numerous gullies sourced from the north that eroded into the channel belt. These gullies were ca 20 km long, <1 km wide and ca 200 m deep. As the channel aggraded, largely inactive and empty gullies served as entry points into the overbank area for turbidity currents within the axial channel. Subsequently, debris‐flow mounds, 7 km wide and >15 km long, plugged and forced the main channel to step abruptly ca 7 km to the south. This resulted in development of an abrupt turn in the channel pathway that propagated to the east and probably played a role in forming a sinuous channel later. As debris‐flow topography was healed, flows spread out onto narrow area between the main channel and northern slope forming a broad fine‐grained apron that serves as the main gas reservoir in this area. This model of the overbank splay formation and the resulting stratigraphic architecture within the confined basin could be applied in modern and ancient systems or for subsurface hydrocarbon reservoirs where three‐dimensional seismic‐reflection data is limited. This study elucidates the geomorphology of the oversteepened slope of the under‐riding plate and its effects on the sedimentation.  相似文献   
2.
《地学前缘(英文版)》2019,10(2):683-704
In the eastern part of the Central Asian Orogenic Belt (CAOB) in northeastern (NE) China, scattered outcrops of molasse deposits mark the ending of an orogeny and are crucial for understanding the evolution of the Paleo-Asian Ocean (PAO). However, the timing of tectonic events and the relationships among these strata remain controversial. To better constrain these geologic events, a comprehensive study of the detrital zircon U-Pb geochronology and geochemistry of the sandstones of the Kaishantun (KST) Formation and Kedao (KD) Group in eastern Jilin Province, NE China, was conducted. The KST Formation is traditionally considered a molasse deposit. The sandstones display low CIA, PIA and high ICV values and low Th/U and Rb/Sr ratios, which suggest that the rocks were derived from an immature intermediate-felsic igneous source and experienced a simple sedimentary recycling history with relatively weak chemical weathering. LA-ICP-MS U-Pb dating of detrital zircons from two samples of the KST Formation yields ages of 748–252 Ma, suggesting that the KST Formation was deposited between 254.5 Ma and 252 Ma in Late Permian. The zircons were mainly derived from the continental northern part of the North China Craton (NCC). In contrast, the U-Pb dating of detrital zircons from five samples of the KD Group yields ages of 2611–230 Ma, suggesting that the KD samples were deposited in the Early to Middle Triassic (ca. 248–233 Ma). The detrital zircon ages for the KD samples can be divided into groups with peaks at 2.5 Ga, 1.8 Ga, 800–1000 Ma, 500 Ma and 440–360 Ma, which suggest that the samples were derived from bidirectional provenances in the Jiamusi-Khanka Block and the NCC. These new data, combined with previously published results, suggest that at least three orogenic events occurred in central-eastern Jilin Province during the Early Permian (270–262 Ma), Early Triassic (254–248 Ma) and Middle–Late Triassic (242–227 Ma). The final closure of the PAO occurred during 242–227 Ma in the Middle–Late Triassic along the Changchun-Yanji suture zone. The detrital zircon geochronological data clearly record plate convergence and the scissor-like closure of the PAO in the eastern CAOB.  相似文献   
3.
We present a general stratigraphic synthesis for the Upper Rhine Graben (URG) and the Swiss Molasse Basin (SMB) from Eocene to Pliocene times. The stratigraphic data were compiled both from literature and from research carried out by the authors during the past 6 years ; an index of the stratigraphically most important localitites is provided. We distinguish 14 geographical areas from the Helvetic domain in the South to the Hanau Basin in the North. For each geographical area, we give a synthesis of the biostratigraphy, lithofacies, and chronostratigraphic ranges. The relationships between this stratigraphic record and the global sea-level changes are generally disturbed by the geodynamic (e.g., subsidence) evolution of the basins. However, global sea-level changes probably affected the dynamic of transgression–regression in the URG (e.g., Middle Pechelbronn Beds and Serie Grise corresponding with sea-level rise between Ru1/Ru2 and Ru2/Ru3 sequences, respectively) as well as in the Molasse basin (regression of the UMM corresponding with the sea-level drop at the Ch1 sequence). The URGENT-project (Upper Rhine Graben evolution and neotectonics) provided an unique opportunity to carry out and present this synthesis. Discussions with scientists addressing sedimentology, tectonics, geophysics and geochemistry permitted the comparison of the sedimentary history and stratigraphy of the basin with processes controlling its geodynamic evolution. Data presented here back up the palaeogeographic reconstructions presented in a companion paper by the same authors (see Berger et al. in Int J Earth Sci 2005).  相似文献   
4.
5.
青藏高原隆升与环境效应   总被引:17,自引:1,他引:17  
通过对青藏高原北缘库木库里盆地新生代沉积建造、孢粉、阶地热年龄、沉积响应的调查研究,得出青藏高原新生代的渐新世、上新世和更新世一全新世形成的三套磨拉石建造代表青藏高原最强烈的三次隆升作用;自渐新世以来到上新世晚期高原隆升幅度达1500~2000m,更新世、全新世高原隆升了约2500m,46.4Ka.Bp至今高原隆升了约44m;青藏高原的隆升速率由渐新世开始有愈来愈强烈的趋势,预示青藏高原的隆升是一个多阶段、不等速和非均变的复杂过程;根据库木库里盆地沉积演化揭示青藏高原的隆升经历了早中渐新世早期隆升期、晚渐新世——早中新世早期稳定剥蚀夷平期、早中新世中晚期小幅隆升期、中中新世较稳定剥蚀夷平期、晚中新世振荡隆升期、上新世快速隆升期、更新世一全新世强烈隆升期共七个隆升阶段;并探讨了高原隆升引起的气候干燥、生物灭绝、荒漠化等多种环境效应。  相似文献   
6.
7.
 The Late Cretaceous to Early Miocene strata of the Carpathian foreland basin in southern Moravia (Czech Republic) are represented by a variety of facies which reflects the evolution of the foreland depositional system. However, because of the intensive deformation and tectonic displacement and the lack of diagnostic fossils the stratigraphic correlation and paleogeographic interpretation of these strata are difficult and often controversial. In order to better correlate and to integrate them into a broader Alpine–Carpathian foreland depositional system, these discontinuous and fragmentary strata have been related to four major tectonic and depositional events: (a) formation of the Carpathian foreland basin in Late Cretaceous which followed the subduction of Tethys and subsequent deformation of the Inner Alps-Carpathians; (b) Middle to Late Eocene transgression over the European foreland and the Carpathian fold belt accompanied by deepening of the foreland basin and deposition of organic-rich Menilitic Formation; (c) Late Oligocene to Early Miocene (Egerian) uplifting and deformation of inner zones of the Carpathian flysch belt and deposition of Krosno-type flysch in the foreland basin; and (d) Early Miocene (Eggenburgian) marine transgression and formation of late orogenic and postorogenic molasse-type foreland basin in the foreland. These four principal events and corresponding depositional sequences are recognized throughout the region and can be used as a framework for regional correlation within the Alpine–Carpathian foreland basin. Received: 18 August 1998 / Accepted: 9 June 1999  相似文献   
8.
Abstract

Flysch and molasse are discussed in the light of alpine geodynamics. They are pre-collision and post-collision orogenic clastics which accumulated in basins under different geodynamic controls. We propose that in the case of the Alps, their succession records the change in geodynamics from pre-collision inversion of shallower extensio-nal structures, to post-collision inversion of one or more deep-seated features.

The classical flysch of the Prealps, lying within a pile of nappes at the front of the Western Alps, are invariably turbidite deposits. Flysch has therefore acquired a sedimentological connotation over the years, and this has been emphasized over the last few decades. Turbidite facies were also laid down in marginal and foreland locations during and a little after the collision between the South and North Tethyan Alpine margins, and this has obscured the possible deeper signification of flysch and molasse.

Geodynamic regimes dictate the subsidence behaviour of basins, so by use of geohistory analysis, the time and place of the onset of Molasse basin development may be located. This was at the southern margin of the Helvetic belt, from the start of the Oligocene. Along the Alpine traverse of Western Switzerland, the change in regime from flysch to molasse (i.e. from trench and forearc or retro-arc, to foreland basin deposits) suggests that a major deep-seated inversion structure was situated near the Helvetic-Ultrahelvetic boundary.  相似文献   
9.
西藏金沙江缝合带西段晚三叠世碰撞作用与沉积响应   总被引:17,自引:4,他引:17  
李勇  王成善  伊海生 《沉积学报》2003,21(2):191-197
青藏高原是由若干条缝合带和其间所夹的沉积盆地构成,其中晚三叠世北羌塘盆地位于金沙江缝合带南缘,盆地的充填实体显示为南薄北厚,为楔形沉积体;在垂向上,以不整合面为界可将该套充填地层划分为两个构造层序,下部构造层序以复理石建造为特征,上部构造层序以磨拉石建造为特征,具有典型的前陆盆地充填序列;盆地具双物源和双古流向体制,沉降中心和沉积中心具有不一致,显示其为金沙江缝合带南侧的周缘前陆盆地,从而确定了晚三叠世北羌塘前陆盆地与金沙江缝合带的成因关系。在此基础上,结合在金沙江缝合带西段新发现和确定的蛇绿岩的最小年龄和碰撞型花岗岩的年龄,本文根据下部构造层序复理石的年龄、前缘隆起的形成年龄、冲断带隆升成为地貌高地的年龄、下部不整合面的时代和前缘隆起型碳酸岩缓坡的形成时间标定了金沙江缝合带碰撞事件的时代下限,根据上部构造层序磨拉石的年龄、上部不整合面的年龄、花岗岩和构造碎裂岩成为物源的年龄标定了金沙江缝合带碰撞事件的时代上限,表明金沙江缝合带初始碰撞事件为卡尼克期与诺利克期之间,最终碰撞事件介于诺利克期与瑞替克期之间.  相似文献   
10.
Bacterial methane gas accumulations occur in Upper Oligocene to Early Miocene clastic deepwater sediments in the Austrian Molasse Basin. Methane gas is produced from the Upper Puchkirchen Fm. (Aquitanian) in the Atzbach-Schwanenstadt gas field which is one of the largest gas fields in this basin.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号