首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   2篇
  国内免费   1篇
地球物理   5篇
地质学   9篇
  2019年   1篇
  2016年   1篇
  2014年   2篇
  2013年   1篇
  2012年   1篇
  2009年   3篇
  2005年   3篇
  2004年   1篇
  2001年   1篇
排序方式: 共有14条查询结果,搜索用时 31 毫秒
1.
A Middle to Late Triassic (Ladinian–Carnian) radiolarian fauna was discovered in cherts of the Situlanglang Member of the Garba Formation, South Sumatra, which is generally regarded as of Late Jurassic–Early Cretaceous age. This fauna is characterized by the presence of Annulotriassocampe sulovensis, Triassocampe postdeweveri, Spongotortilispinus tortilis, Poulpus piabyx, Canoptum levis and others. This evidence possibly indicates that the deposition of the Situlanglang cherts took place after the collision of the Sibumasu and East Malaya blocks recorded in the Bentong–Raub Suture in Peninsular Malaysia in Late Permian–Early Triassic times. During the Middle–Late Triassic Sumatra and Peninsular Malaysia consisted of submarine horst and graben structures. It is possible that a submarine graben, the Tuhur basin, whose southern boundary was formerly undefined, extends into South Sumatra, to the area in which the Situlanglang cherts were deposited. The Situlanglang Member is proposed to be a rock unit stratigraphically contemporaneous with those of the Middle–Upper Triassic Kualu and Tuhur Formations in North and Central Sumatra.  相似文献   
2.
The Bentong‐Raub Suture Zone (BRSZ) of Peninsular Malaysia is one of the major structural zones in Sundaland, Southeast Asia. It forms the boundary between the Gondwana‐derived Sibumasu terrane in the west and Sukhothai Arc in the east. The BRSZ is genetically related to the sediment‐hosted/orogenic gold deposits associated with the major lineaments in the Central Gold Belt of Peninsular Malaysia. In this investigation, the Phased Array type L‐band Synthetic Aperture Radar (PALSAR) satellite remote sensing data were used to map major geological structures in Peninsular Malaysia and provide detailed characterization of lineaments and curvilinear structures in the BRSZ, as well as their implication for sediment‐hosted/orogenic gold exploration in tropical environments. Major structural lineaments such as the Bentong‐Raub Suture Zone (BRSZ) and Lebir Fault Zone, ductile deformation related to crustal shortening, brittle disjunctive structures (faults and fractures) and collisional mountain range (Main Range granites) were detected and mapped at regional scale using PALSAR ScanSAR data. The major geological structure directions of the BRSZ were N–S, NNE–SSW, NE–SW and NW–SE, which derived from directional filtering analysis to PALSAR fine and polarimetric data. The pervasive array of N–S faults in the Central Gold Belt and surrounding terrain is mainly linked to the N–S trending of the Suture Zone. N–S striking lineaments are often cut by younger NE–SW and NW–SE‐trending lineaments. Gold mineralized trend lineaments are associated with the intersection of N–S, NE–SW, NNW–SSE and ESE–WNW faults and curvilinear features in shearing and alteration zones. Compressional tectonic structures such as the NW–SE trending thrust, ENE–WSW oriented faults in mylonite and phyllite, recumbent folds and asymmetric anticlines in argillite are high potential zones for gold prospecting in the Central Gold Belt. Three generations of folding events in Peninsular Malaysia have been recognized from remote sensing structural interpretation. Consequently, PALSAR satellite remote sensing data is a useful tool for mapping major geological structural features and detailed structural analysis of fault systems and deformation areas with high potential for sediment‐hosted/orogenic gold deposits and polymetallic vein‐type mineralization along margins of Precambrian blocks, especially for inaccessible regions in tropical environments.  相似文献   
3.
The Cimmerian terrane forms an almost unbroken chain stretching >13,500 km, from central southern Europe to western Indonesia, via SE Europe, the Middle East, Afghanistan, Tibet, SW China and Myanmar. Ar-guably, it is Earth’s most spectacular example of a “sliver” terrane, dwarfing in size more recently devel-oped examples, for instance the Palawan Block in the western Philippines, and the Lord Howe Rise in the Tasman Sea. The presentation will first outline the in-triguing geological features associated with this unique tectonic entity. Following that, recently obtained results following paleomagnetic investigations of two lower Permian rift-related basalt suites will be summarized (Abor Volcanics in northeastern India and Woniusi Ba-salts in Yunnan, China). The two studies are part of a larger programme of ongoing research aimed at deducing (I) the geodynamic configuration that generated the un-usual rifting system, and (II) exactly how Cimmeria fit-ted against Gondwana prior to its dispersal in the Early Permian. The critical unit is Baoshan, which we fit against Gondwana within a narrow longitudinal belt close to where northern India and northwestern Australia were once in close proximity (Fig. 1). Furthermore, we suggest that Sibumasu lay to directly the east, offshore of Australia; Qiangtang and Lhasa almost certainly sat to the west (off northern Greater India-SE Arabia), but we are uncertain as to their exact configuration. Our findings will be compared with several rather different models that have been published in recent years. The new pa-leomagnetic constraint highlights the flexibility authors currently have in reconstructing the region, principally because of the overall lack of similar high-quality data from the various blocks. We explain how new data could resolve these ambiguities, thereby offering more robust explanations for eastern Gondwana’s late Paleozoic de-velopment.  相似文献   
4.
Basaltic dykes of Peninsular Malaysia are confined to the Eastern Belt (Indochina/East Malaya block) as compared with the Western Belt (Sibumasu Block). The dyke intruded through a crustal fracture formed by stress developed from the evolution of two offshore basins (Malay and Penyu basins) east of Peninsular Malaysia. The Ar–Ar dating from the present study combined with the previous geochronological data indicate that the ages of dykes range from 79 ± 2 Ma to 179 ± 2 Ma. Thus it is difficult to correlate the dykes with the closure of Tethys during Permo-Triassic time because of the younger age of the dykes. The majority of the dykes exposed in the Eastern Belt may have been attributed to the difference of crustal thickness between the Eastern and Western belt of Peninsular Malaysia. A thicker Western Belt crust (13 km more than both Eastern and Central belts) is difficult to rupture with normal plate tectonic stress and therefore serves to contain the rise of a mantle derived melt. The chemistry indicates the basalts are olivine to quartz normative and are of the continental within-plate category.  相似文献   
5.
A new stratigraphic nomenclature is proposed for the approximately 600 m thick, mainly clastic transitional sequence between the underlying Mempelam Limestone and overlying Kubang Pasu/Singa Formation in northwest Peninsular Malaysia. This sequence represents shallow marine deposits of the continental margin of the Sibumasu Terrane during the Middle Palaeozoic (Devonian–Carboniferous). It is separated into several formations. The Timah Tasoh Formation is an approximately 76 m sequence consisting of 40 m of laminated tentaculitid shales at the base, containing Monograptus yukonensis Jackson and Lenz and Nowakia (Turkestanella) acuaria Alberti, giving an Early Devonian (Pragian–Emsian) age, and about 36 m of rhythmically interbedded, light coloured argillo-arenites. The Chepor Formation is about 90 m thick and consists mainly of thick red mudstone interbedded with sandstone beds, of Middle to Late Devonian age. A new limestone unit is recognized and named the Sanai Limestone, which contains conodonts of Famennian age. The Binjal Formation consists of red and white mudstone interbedded with sandstone beds showing Bouma sequences. The Telaga Jatoh Formation is 9 m thick and consists mainly of radiolarian chert. The Wang Kelian Formation is composed of thick red mudstone beds interbedded with silty sandstone, and contain fossils indicative of an Early Carboniferous (Visean) age. The succession was deposited on the outer shelf, with depositional environments vertically fluctuating from prodelta to basinal marine. The Devonian–Carboniferous boundary is exposed at Hutan Aji and Kampung Guar Jentik, and indicates a major regressive event during the latest Devonian.  相似文献   
6.
Abstract Thailand comprises two continental blocks: Sibumasu and Indochina. The clastic rocks of the Triassic Mae Sariang Group are distributed in the Mae Hong Son–Mae Sariang area, north‐west Thailand, which corresponds to the central part of Sibumasu. The clastic rocks yield abundant detrital chromian spinels, indicating a source of ultramafic/mafic rocks. The chemistry of the detrital chromian spinels suggests that they were derived from three different rock types: ocean‐floor peridotite, chromitite and intraplate basalt, and that ophiolitic rocks were exposed in the area, where there are no outcrops of them at present. Exposition of an ophiolitic complex denotes a suture zone or other tectonic boundary. The discovery of chromian spinels suggests that the Gondwana–Tethys divide is located along the Mae Yuam Fault zone. Both paleontological and tectonic aspects support this conclusion.  相似文献   
7.
It has previously been proposed that the Sibumasu block of Southeast Asia, which contains glaciomarine deposits, became detached from the Gondwana margin during the Early Permian. A combination of facies analysis and the identification of dropstones and dump structures from a Lower Permian diamictite-bearing sequence at Phuket, Thailand, and adjacent islands suggests that the sediments originated as glaciomarine and debris-flow deposits. The Lower Permian diamictite-bearing sequence in the study area corresponds to the Ko Sire and Ko He Formations, both of which consist of three principal lithofacies: diamictite, sandstone, and fine-grained facies. The low-lying Ko Sire Formation is up to 400 m thick and is characterized by laminated mudstone; the presence of dropstones and dump structures associated with Cruziana ichnofacies indicates ice-rafted sedimentation in a glacially influenced offshore area. The Ko Sire Formation is overlain by a diamictite sequence of the Ko He Formation (up to 400 m thick). Poorly and well-stratified diamictites with tabular and lensoidal geometries, in combination with resedimentation textures, indicate that the diamictites within the Ko He Formation are debris-flow deposits. The similar lithology of clasts in the diamictites and dropstones possibly suggests that the debris-flow diamictite was presumably remobilized from pre-existing glacial deposits. The evidence of a glacially influenced offshore environment supports a previously proposed paleogeographic interpretation in which the Sibumasu block was most likely located at the Northwest Australian margin of Gondwana.  相似文献   
8.
It is now generally accepted that Southeast Asia is composed of continental blocks which separated from Gondwana with the formation of oceanic crust during the Paleozoic, and were accreted to Asia in the Late Paleozoic or Early Mesozoic, with the subduction of the intervening oceanic crust. From east to west the Malay peninsula and Sumatra are composed of three continental blocks: East Malaya with a Cathaysian Permian flora and fauna; Sibumasu, including the western part of the Malay peninsula and East Sumatra, with Late Carboniferous–Early Permian 'pebbly mudstones' interpreted as glaciogenic diamictites; and West Sumatra, again with Cathaysian fauna and flora. A further unit, the Woyla nappe, is interpreted as an intraoceanic arc thrust over the West Sumatra block in the mid Cretaceous. There are varied opinions concerning the age of collision of Sibumasu with East Malaya and the destruction of Paleotethys. In Thailand, radiolarites have been used as evidence that Paleotethys survived until after the Middle Triassic. In the Malay peninsula, structural evidence and the ages of granitic intrusions are used to support a Middle Permian to Early Triassic age for the destruction of Paleotethys. It is suggested that the West Sumatra block was derived from Cathaysia and emplaced against the western margin of Sibumasu by dextral transcurrent faulting along a zone of high deformation, the Medial Sumatra Tectonic Zone. These structural units can be traced northwards in Southeast Asia. The East Malaya block is considered to be part of the Indochina block, Sibumasu can be traced through Thailand into southern China, the Medial Sumatra Tectonic Zone is correlated with the Mogok Belt of Myanmar, the West Burma block is the extension of the West Sumatra block, from which it was separated by the formation of the Andaman Sea in the Miocene, and the Woyla nappe is correlated with the Mawgyi nappe of Myanmar.  相似文献   
9.
10.
Fossils from the Cambrian to Devonian rocks of southern Thailand, the Langkawi Islands, mainland Kedah, Perlis, north Perak and central West Peninsular Malaysia are listed and reviewed, and their stratigraphy and correlation reassessed. The hitherto anomalous record of the trilobite Dalmanitina from Malaysia is reviewed and found to be of latest Ordovician (Hirnantian) age, rather than Lower Silurian age as previously reported, and is considered a probable synonym of the widespread Mucronaspis mucronata. A new stratigraphical nomenclature is erected for part of the Langkawi, mainland Kedah and Perlis area successions, in which the term Setul Limestone (which stretched from the Ordovician to the Devonian) is abandoned and replaced by the Middle Ordovician Kaki Bukit Limestone, the late Ordovician and early Silurian Tanjong Dendang Formation, the Silurian Mempelam Limestone, and the early Devonian Timah Tasoh Formation, all underlying the paraconformity with the late Devonian Langgun Red Beds. There was a single depositional basin in the generally shallow-water and cratonic areas of southern Thailand, Langkawi, and mainland Kedah and Perlis, in contrast to the deeper-water basin of north Perak. Only Silurian rocks are dated with certainty within another basin in central West Malaysia, near Kuala Lumpur, which were also cratonic and shallow-water, although to the east in west Pahang there are basal Devonian deeper-water sediments with graptolites. The area is reviewed in its position within the Sibumasu Terrane, which, in the Palaeozoic, also included central and northern Thailand, Burma (Myanmar) and southwest China (part of Yunnan Province).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号