首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
  国内免费   1篇
地球物理   2篇
地质学   5篇
  2019年   1篇
  2016年   1篇
  2010年   1篇
  2007年   1篇
  2004年   1篇
  2002年   1篇
  2000年   1篇
排序方式: 共有7条查询结果,搜索用时 109 毫秒
1
1.
Three-dimensional seismic data from the Faeroe-Shetland Basin provides detailed information on the relationships between sills, dykes, laccoliths and contemporaneous volcanic activity. The data shows that sills are predominantly concave upwards, being complete or partial versions of radially or bilaterally symmetrical forms that possess flat inner saucers connected to a flat outer rim by a steeply inclined sheet. Such morphologies are only partially modified by pre-existing faults. Sills can be sourced from dykes or the steep climbing portions of deeper sills. Both sills and dykes can provide magma to overlying volcanic fissures and sills can be shown to feed shallow laccoliths. Magma flow patterns, as revealed by opacity rendering, suggest that sills propagate upwards and outwards away from the magma feeder. As an individual sill can consist of several leaves emplaced at different stratigraphic levels, and as a sill or dyke can provide magma to volcanic fissures, other sills and laccoliths, the data suggests that neutral buoyancy concepts may not provide a complete explanation for the mechanism and level of sill emplacement. Instead, the data suggests that the presence of lithological contrasts, particularly ductile horizons such as overpressured shales may permit sill formation at any level below the neutrally buoyant level. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. Ken Thomson–deceased, April 2007  相似文献   
2.
Finite volumes of magma moving in confinement, store hydraulic potential energy for the generation, control and transmission of power. The Pascal's principle in a hydraulic jack arrangement is used to model the vertical and lateral growth of sills. The small input piston of the hydraulic jack is equivalent to the feeder dike, the upper large expansible piston equivalent to the magmatic chamber and the inertial force of the magma in the dike is the input force. This arrangement is particularly relevant to the case of sills expanding with blunt tips, for which rapid fracture propagation is inhibited. Hydraulic models concur with experimental data that show that lateral expansion of magma into a sill is promoted when the vertical ascent of magma through a feeder dike reaches the bottom contact with an overlying, flat rigid-layer. At this point, the magma is forced to decelerate, triggering a pressure wave through the conduit caused by the continued ascent of magma further down (fluid-hammer effect). This pressure wave can provide overpressure enough to trigger the initial hydraulic lateral expansion of magma into an incipient sill, and still have enough input inertial force left to continue feeding the hydraulic system. The lateral expansion underneath the strong impeding layer, causes an area increase and thus, further hydraulic amplification of the input inertial force on the sides and roof of the incipient sill, triggering further expansion in a self-reinforcing process. Initially, the lateral pressure increase is larger than that in the roof allowing the sill to expand. However, expansion eventually increases the total integrated force on the roof allowing its uplift into either a laccolith, if the roof preserves continuity, or into a piston bounded by a circular set of fractures. Hydraulic models for shallow magmatic chambers, also suggest that laccolith-like intrusions require the existence of a self-supported chamber roof. In contrast, if the roof of magmatic chambers loses the self-supporting capacity, lopoliths and calderas should be expected for more or less dense magmas, respectively, owing to the growing influence of the density contrast between the host rock and the magma.  相似文献   
3.
The Midcontinent Rift (MCR) of North America comprises a series of basaltic sheets, flows and intrusive rocks emplaced in the Lake Superior region during the Mesoproterozoic. The mafic rocks preserved on the northern flank of Lake Superior represent the older portions of the rift sequence and offer insights into the early development of the rift. New geochronological, geochemical and paleomagnetic data are presented for the dikes and sills located in and south of Thunder Bay, Ontario. Three sill suites are recognized within the study area; an earlier, spatially restricted ultramafic unit termed the Riverdale sill, the predominant Logan sills and Nipigon sills in the north of the study area. In addition three dike sets are recognized, the north-east trending Pigeon River swarm, the north-west trending Cloud River dikes and the Mt. Mollie dike. The geochemical data demonstrate that the majority of sills south of Thunder Bay are of Logan affinity and distinct from those of broadly similar age in the Nipigon Embayment to the north. The Pigeon River dikes that intrude the sills are geochemically coherent but distinct from the Logan sills and could not be feeders to the sills. The new age of 1109.2 ± 4.2 Ma for the Cloud River dike and its R polarity are consistent with published magnetostratigraphy. The Mt. Mollie dike age (1109.3 ± 6.3 Ma) indicates that it is not coeval with the spatially associated Crystal Lake gabbro as previously thought. The complexity of the dike and sill suites on the northern flank of suggests that the early phases of rifting occurred in distinct and changing stress fields prior to the main extensional rifting preserved in younger rocks to the south. The geochemistry and geochronology of the intrusions suggest a long-lived and complex magmatic history for the Midcontinent Rift.  相似文献   
4.
The Koktokay pegmatite-type rare-metal-bearing ore district in the Altai orogen is famous for both its large scale and its diversity of rare metals. However, the emplacement mechanisms of the ore-bearing pegmatite intrusions in the Koktokay ore district are still unclear. Based on field observations, the emplacement of the ore-bearing pegmatite intrusions falls into two types. The first type is typical of the formation of dykes and sills, whereby they intruded into fan shaped, moderate dipping, joints within plutonic rocks. The second type involves the formation of a punched laccolith that was fed by a pegmatite sill. Magmatic stoping is the main mechanism of the laccolith emplacement. The peripheral faults played an important role in helping the emplacement of the laccolith. The trend of dykes and sills indicate two potential prospecting areas, which are located in the western and northern regions of the Koktokay ore district.  相似文献   
5.
A detailed set of observations are presented of the tidal forcing and basin response of Loch Etive, a jet-type fjordic system on the west coast of Scotland. The characteristics of the tidal jet observed during a spring tide are discussed in detail, and with reference to laboratory studies of Baines and Hoinka (1985). Although the system is categorized as a jet basin during spring tides (when the mode-1 densimetric Froude number exceeds 1) and a wave basin during neap tides (when the Froude number remains below 1), a mode-1 baroclinic wave response is observed throughout the spring/neap cycle. Of the total incident tidal energy, 16% is lost from the barotropic tide. The ratio between loss to bottom friction, barotropic form drag and baroclinic wave drag is estimated to be 1:4:1 (1:4:3.3) at springs (neaps). Despite this, during a spring tide, a 20-m amplitude baroclinic mode-1 wave is observed to propagate along the full length of the basin at a speed of 0.2 m s–1, somewhat slower than the predicted linear mode-1 phase speed. A hydrographic section supports the implication of the dissipation of the baroclinic wave towards the loch head. The stratification of the upper layers is observed to decrease rapidly landward of the 40-m isobath, a possible signature of enhanced diapycnal mixing in the shallower reaches towards the loch head.Responsible Editor: Jens Kappenberg  相似文献   
6.
N. Hald  C. Tegner   《Lithos》2000,54(3-4):207-233
The Paleozoic–Mesozoic Jameson Land Basin (East Greenland) is intruded by a sill complex and by a swarm of ESE trending dykes. Together with dykes of the inner Scoresby Sund fjord, they form a regional Early Tertiary intrusive complex located 200–400 km inland of the East Greenland rifted continental margin. Most of the intrusive rocks in the Jameson Land Basin are geochemically coherent and consist of evolved plagioclase–augite–olivine saturated, uncontaminated high-Ti basalt with 48.5–50.2 wt.% SiO2, 2.2–3.2 wt.% TiO2, 5.1–7.4 wt.% MgO, 9–17 ppm Nb and La/YbN=2.8–3.6. Minor tholeiitic rock types are: (a) low-Ti basalt (49.7 wt.% SiO2, 1.7 wt.% TiO2, 6.8 wt.% MgO, 2.6 ppm Nb and La/YbN=0.5) akin to oceanic basalts; (b) very-high-Ti basalt (48.6 wt.% SiO2, 4.1 wt.% TiO2, 5.1 wt.% MgO and 21 ppm Nb); and (c) plagioclase ultraphyric basalt. The tholeiitic dolerites are cut by alkali basalt (43.7–47.3 wt.% SiO2, 4.1–5.1 wt.% TiO2, 4.9–6.2 wt.% MgO, 29–46 ppm Nb and La/YbN=16–17) sills and dykes.Modelling of high-field-strength and rare-earth elements indicate that the high-Ti basalts formed from 6–10% melting of approximately equal proportions of garnet- and spinel-bearing mantle of slightly depleted composition beneath thick continental lithosphere. Conversely, dolerite intrusions and flood basalts of similar compositional kindred from adjacent but more rift-proximal occurrences in Northeast Greenland formed from shallower melting of dominantly spinel-bearing mantle beneath extended and thinned continental lithosphere. These variations in lithospheric thickness suggest the continent–ocean transition of the East Greenland rifted volcanic margin is sharp and narrow.40Ar–39Ar dating and paleomagnetism show that the high-Ti dolerites were emplaced at 53–52 Ma (most likely during C23r) and hence surprisingly postdate the main flood volcanism by 2–5 Ma and the inception of seafloor spreading between Greenland and Europe by 1–2 Ma. The formation of tholeiitic and alkaline magmas emplaced into the Jameson Land Basin corroborates to the importance of post-breakup magmatism along the East Greenland volcanic rifted margin. Upwelling of the ancestral Iceland mantle plume under central Greenland at 53–52 Ma (rather than under the active rift), perhaps accompanied by a failed attempt to shift the rift zone westward towards the plume axis, may have triggered post-breakup continental magmatism of the Jameson Land Basin and the inner Scoresby Sund region, along preexisting structural lineaments.  相似文献   
7.
The shallow intrusive bodies and lava flows emplaced within the Permian upper red unit in the Anayet Massif, represent a magmatic episode that occurred about 255 Ma (Saxonian) in the Pyrenean Axial Zone (northern Spain). Anisotropy of magnetic susceptibility (AMS) measurements, in both igneous bodies and their host rocks, allow us to infer the existence of magnetic fabrics of tectonic origin linked to the main cleavage-related folding episode. The relationship between the susceptibility axes and the field structures is the criterion that permits to differentiate normal from inverse magnetic fabrics in the igneous samples. The structural interpretation of all AMS data taken from the igneous bodies and sedimentary host rocks, is in accordance with a folding model which include: (i) flattening associated with cleavage formation during fold amplification in incompetent layers (host pelites), responsible for a magnetic lineation at high angles with respect to the regional folding axis and (ii) buckling in competent (conglomerates and igneous bodies) levels, responsible for a magnetic lineation parallel to the regional fold axes.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号