首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
地球物理   2篇
地质学   2篇
海洋学   2篇
  2019年   1篇
  2014年   2篇
  2008年   1篇
  2007年   1篇
  1998年   1篇
排序方式: 共有6条查询结果,搜索用时 375 毫秒
1
1.
This study presents a sea-level curve from 9500 to 6500 cal BP for the farfield location of Singapore, on the Sunda Shelf in southeast Asia. The curve is based on more than 50 radiocarbon dates from elevations of +1.43 m to −15.09 m representing sea-level index points in intertidal mangrove and shallow marine sediments deposited by sea-level rise accompanying deglaciation. The results indicate that mean sea level rose rapidly from around −17 m at 9500 cal BP to around −3 m by 8000 cal BP. After this time, the data suggest (but do not unequivocally prove) that the rate of sea-rise slowed for a period of 300–500 years centred on 7700 cal BP, shortly after the cessation of meltwater input to the oceans from the northern hemisphere. Renewed sea-level rise amounting to 3–5 m began around 7400 cal BP and was complete by 7000 cal BP. The existence of an inflection in the rate of sea-level rise, with a slow-down centred on 7700 cal BP, is broadly consistent with other available sea-level curves over this interval and is supported by evidence of stable shorelines and delta initiation elsewhere at this time, as well as evidence of comparatively rapid retreat of the West Antarctic ice sheet beginning around 7500 cal BP. ‘Stepped’ sea-level rise occurring shortly after 7500 cal BP and also earlier during deglaciation may have served to focus significant post-glacial episodes of human maritime/coastal dispersal, into comparatively narrow time intervals.  相似文献   
2.
3.
Borneo occupies a central position in the Sundaland promontory of SE Asia. It has a complex Cenozoic geological history of sedimentation and deformation which began at about the same time that India is commonly suggested to have started to collide with Asia. Some tectonic reconstructions of east and SE Asia interpret a large SE Asian block with Borneo at its centre which has been rotated clockwise and displaced southwards along major strike–slip faults during the Cenozoic due to the indentation of Asia by India. However, the geological history of Borneo is not consistent with the island simply forming part of a large block extruded from Asia. The large clockwise rotations and displacements predicted by the indentor model for Borneo are incompatible with palaeomagnetic evidence and there is no evidence that the major strike–slip faults of the Asian mainland reach Borneo. Seismic tomography shows there is a deep high velocity anomaly in the lower mantle beneath SE Asia interpreted as subducted lithosphere but it can be explained just as well by alternative tectonic models as by the indentor model. Very great thicknesses of Cenozoic sediments are present in Borneo and circum-Borneo basins, and large amounts of sediment were transported to the Crocker turbidite fan of north Borneo from the Eocene to the Early Miocene, but all evidence indicates that these sediments were derived from local sources and not from distant sources in Asia elevated by India–Asia collision. The Cenozoic geological history of Borneo records subduction of the proto-South China Sea and Miocene collision after this ocean lithosphere was eliminated, and a variety of effects resulting from long-term subduction beneath SE Asia. There is little to indicate that India–Asia collision has influenced the Cenozoic geological record in Borneo.  相似文献   
4.
Most of the basins developed in the continental core of SE Asia (Sundaland) evolved since the Late Cretaceous in a manner that may be correlated to the conditions of the subduction in the Sunda Trench. By the end of Mesozoic times Sundaland was an elevated area composed of granite and metamorphic basement on the rims; which suffered collapse and incipient extension, whereas the central part was stable. This promontory was surrounded by a large subduction zone, except in the north and was a free boundary in the Early Cenozoic. Starting from the Palaeogene and following fractures initiated during the India Eurasia collision, rifting began along large faults (mostly N–S and NNW–SSE strike-slip), which crosscut the whole region. The basins remained in a continental fluvio-lacustrine or shallow marine environment for a long time and some are marked by extremely stretched crust (Phu Khanh, Natuna, N. Makassar) or even reached the ocean floor spreading stage (Celebes, Flores). Western Sundaland was a combination of basin opening and strike-slip transpressional deformation. The configuration suggests a free boundary particularly to the east (trench pull associated with the Proto-South China Sea subduction; Java–Sulawesi trench subduction rollback). In the Early Miocene, Australian blocks reached the Sunda subduction zone and imposed local shortening in the south and southeast, whereas the western part was free from compression after the Indian continent had moved away to the north. This suggests an important coupling of the Sunda Plate with the Indo-Australian Plate both to SE and NW, possibly further west rollback had ceased in the Java–Sumatra subduction zone, and compressional stress was being transferred northwards across the plate boundary. The internal compression is expressed to the south by shortening which is transmitted as far as the Malay basin. In the Late Miocene, most of the Sunda Plate was under compression, except the tectonically isolated Andaman Sea and the Damar basins. In the Pliocene, collision north of Australia propagated toward the north and west causing subduction reversal and compression in the short-lived Damar Basin. Docking of the Philippine Plate confined the eastern side of Sundaland and created local compression and uplift such as in NW Borneo, Palawan and Taiwan. Transpressional deformation created extensive folding, strike-slip faulting and uplift of the Central Basin and Arakan Yoma in Myanmar. Minor inversion affected many Thailand rift basins. All the other basins record subsidence. The uplift is responsible for gravity tectonics where thick sediments were accumulated (Sarawak, NE Luconia, Bangladesh wedge).  相似文献   
5.
基于近年来国内外关于青藏高原及川、滇、缅、印支地区大地构造演化、现今地壳运动观测、地壳与上地幔结构反演等领域取得的大量观测与研究成果,结合对泰、越等国的野外地质考察与认识,以探索建立对该地区现今地壳运动与变形状态起控制作用的构造框架为目的,提出了相对于"活动地块"的"相对稳定地块"的概念。综合分析认为,巽他地块在构造演化、介质特性及现今运动与变形等方面类似于青藏高原周缘的塔里木、阿拉善、扬子等地块,具有"相对稳定地块"的特征,它们共同构成了调节青藏高原物质东向挤出后围绕东喜马拉雅构造结发生顺时针旋转的刚性约束边界。这同时意味着,青藏高原侧向挤出动力作用的势力范围可能覆盖了川、滇、缅及印度支那北部的广大地区,这有助于加深对该地区强震动力学环境的认识。  相似文献   
6.
Chris Parkinson 《Island Arc》1998,7(1-2):231-245
Variably dismembered and metamorphosed accretionary complexes constitute the basement of much of the Indonesian island of Sulawesi. The most extensive of these is the Pompangeo Schist Complex, which crops out over ∼ 5000 km2 in central Sulawesi, and is predominantly composed of interbanded phyllitic marble, calcareous phyllite, graphitic schist and quartzite; rocks of terrigenous to shallow marine origin. Along the eastern margin of the complex, schists are interthrust with unmetamorphosed Jurassic sandstone, which may represent parental material of the complex. The schists are unconformably overlain by pelagic sediments with an Albian–Cenomanian biostratigraphy. Synmetamorphic progressive deformation of the Pompangeo Schist Complex has resulted in repeated isoclinal folding and a strong transposition foliation striking north-northwest/south-southeast and dipping west, subparallel to the compositional banding of the complex; microstructural fabrics indicate a top-to-east sense of shear. On a regional scale the Pompangeo Schist Complex is lithostratigraphically coherent and an east-to-west metamorphic field gradient is recognizable, which, if continuous, represents a relatively low thermal gradient of ∼ 15 °C/km. K–Ar dating yielded ages of ca 111 Ma. Correlative metamorphic rocks appear to underlie the entire Neogene magmatic province, since they occur sporadically throughout western Sulawesi, including the Bantimala region of the South Arm. The Pompangeo schist metamorphism cannot be correlated with arc magmatism in western Sulawesi, which is of Neogene age. The Pompangeo and Bantimala schists, as well as other accretionary complexes in western Sulawesi, were probably generated in the same subduction system that was responsible for the extensive Mesozoic continental arc in central Kalimantan, at the eastern margin of Sundaland.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号