首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   0篇
  国内免费   1篇
大气科学   2篇
地球物理   7篇
地质学   9篇
  2022年   1篇
  2020年   1篇
  2015年   1篇
  2013年   1篇
  2011年   1篇
  2010年   1篇
  2009年   2篇
  2008年   4篇
  2006年   1篇
  2005年   1篇
  2004年   3篇
  1992年   1篇
排序方式: 共有18条查询结果,搜索用时 15 毫秒
1.
Rockfill is an important construction material for infrastructure engineering, such as dams, railways and airport foundations, which display a long-term post-construction settlement. However, the main mechanisms for rockfill creep and weathering influence still remain poorly understood. Particle mechanics method is used to understand the rockfill creep process under dry and wet conditions. Different bond-aging models and wetting models that represent different degradation and weakening mechanisms are compared, in order to clarify the principle and secondary mechanisms for rockfill creep and weathering influence. The results show that rockfill aggregate breakage in terms of angularity abrasion is the main source for rockfill creep under dry state. Wetting can induce additional strain mainly due to the reduction of contact friction coefficient, i.e. lubrication, and the bond strength reduction just plays a secondary role in producing additional strain. The earlier the wetting occurs during rockfill creep, the more rapidly the rockfill becomes stable. The wetting–drying cycles can induce strain evolution in a ‘stepped’ way, which is in agreement with experimental observation. The practical implications from the modeling and the outstanding issues in this study are also discussed.  相似文献   
2.
A wetting and drying method for free-surface problems for the three-dimensional, non-hydrostatic Navier–Stokes equations is proposed. The key idea is to use a horizontally fixed mesh and to apply different boundary conditions on the free-surface in wet and dry zones. In wet areas a combined pressure/free-surface kinematic boundary condition is applied, while in dry areas a positive water level and a no-normal flow boundary condition are enforced. In addition, vertical mesh movement is performed to accurately represent the free-surface motion. Non-physical flow in the remaining thin layer in dry areas is naturally prevented if a Manning–Strickler bottom drag is used. The treatment of the wetting and drying processes applied through the boundary condition yields great flexibility to the discretisation used. Specifically, a fully unstructured mesh with any finite element choice and implicit time discretisation method can be applied. The resulting method is mass conservative, stable and accurate. It is implemented within Fluidity-ICOM [1] and verified against several idealized test cases and a laboratory experiment of the Okushiri tsunami.  相似文献   
3.
Shallow failures of slopes in weathered soil are caused by infiltration due to prolonged rainfall. These failures are mainly triggered by the deepening of the wetting band accompanied by a decrease in matric suction induced by the water infiltration. This paper reports trends of rainfall-induced wetting band depth in two types of weathered soils that are commonly found in Korea. Both theoretical and numerical analyses for wetting band depth are presented based on the soil–water characteristic curve obtained using filter paper as well as tensiometer tests. It is found that the magnitude of wetting front suction plays a key role in the stability of slopes in weathered soils. Theoretical analysis based on modified Green and Ampt model tends to underestimate the wetting band depth for typical Korean weathered soils. It was also deduced that for Korean weathered soils, the factor of safety drops rapidly once the wetting band depth of 1.2 m reached.  相似文献   
4.
The saturated and unsaturated flow properties of a field soil under two tillage treatments were obtained with ponded rings and disc permeameters of dissimilar radii. No difference was observed between tillage treatments but the flow properties displayed a distinct macropore-matrix dichotomy, with K changing by an order of magnitude as ψ0 went from just - 30 mm to zero. Accurate prediction of time to incipient ponding was achieved using both numerical and analytical models calibrated with field hydraulic properties that were characteristic of the soil matrix. However, extension of the numerical model to the prediction of the wetting front development under non-ponded conditions was less accurate due to localized preferred wetting It is hypothesized that at this site, localized concentration of rainfall and hence, preferred wetting, May, occur by interception and stemflow associated with lines of standing stubble present in the original seeding slots.  相似文献   
5.
Air bubbles of uniform size (ca. 1 mm diameter) were generated at a submerged orifice (glass capillary) under controlled frequency (down to ca. 0.06 s− 1) in aqueous solutions of frother (Dowfroth 250). The bubbles were sized with an imaging technique. One objective was to establish whether the Tate equation (static balance between buoyancy and capillary forces) could be used as a standard sizing calibration method. Another aim was to verify whether with decreasing surface tension (due to increasing frother concentration) the anticipated decrease in bubble size agreed with the equation prediction. An effect of frother was detected compatible with the role of surface tension but divided into two concentration regions, seemingly the result of a gradual change in bubble shape and wetting: > 6 ppm the bubble holds a spherical shape and the capillary appeared to be completely wetted while at ≤ 6 ppm a degree of non-wetting and bubble distortion (neck formation just prior to detachment) were apparent, supported by qualitative observations. In addition, at > 6 ppm the Tate value was only approached by decreasing the bubble frequency but not attained. Plausible causes for the failure to reach the predicted size are discussed.  相似文献   
6.
The climatic processes of heating and cooling, wetting and drying, and freezing and thawing affect the disintegration characteristics of clay-bearing rocks (shales, claystones, mudstones, and siltstones) to varying degrees. Although heating and cooling, wetting and drying, and freezing and thawing are known to be the main processes responsible for physical disintegration of rocks under natural conditions, most of the previous investigators have used methods based only on water content variations (e.g., jar slake, slake index, and slake durability index tests) to assess the disintegration of clay-bearing rocks. Such assessments may not be adequate to explain the field behaviour of clay-bearing rocks subjected to a full range of climatic processes. In order to evaluate the combined effects as well as relative contributions of various climatic processes on the disintegration behaviour, samples of selected clay-bearing rocks, consisting of 5–6 particles, each weighing 85–150 g, were subjected to multiple cycles of heating and cooling, wetting and drying, and freezing and thawing. These treatments resulted in fragmentation of samples with fragments ranging from 50 to 2 mm and finer in dimensions. A new approach, referred to as the disintegration ratio, and defined as the area under the grain size distribution curve of the disintegrated material to the total area encompassing all grain size distribution curves of the samples, was used to account for fragmentation into varying sizes. Statistical analyses were performed to investigate the relationship between fragmentation, mineralogical composition, and physical properties.  相似文献   
7.
The wetting characteristics of liquid Fe–Si alloys in a matrix of the respective predominating stable silicate mantle mineral (forsterite or silicate perovskite) at pressures of 2–5 and 25 GPa and temperatures of 1600–2000 °C were studied by determining the liquid metal–solid silicate contact angles. The median angle values from texturally equilibrated samples were found to be independent of pressure, temperature, silicate mineralogy and the Si content in the metal fraction and range between 130° and 140° which is far above the critical wetting boundary of 60°. This shows that within the studied range of conditions dissolved Si does not lower the surface energies between Fe-rich liquids and silicate mantle grains. As a consequence, under reducing conditions the presence of Si in the metal phase of planetary bodies would not have enhanced percolative flow as an effective metal–silicate separation process.  相似文献   
8.
Clay-containing stones such as Portland Brownstone (USA), Villarlod Molasse (Switzerland) and Tarifa Sandstone (Spain), are expected to weather as a result of wetting and drying cycles. During drying events, contraction of the drying surface leads to stresses approaching the tensile strength of the stone. However, we have found that the magnitude of these stresses is reduced by the ability of the stone to undergo stress relaxation. In this paper we describe novel methods to determine the magnitude of the stresses and the rate at which they develop and relax. We also discuss the influence of swelling inhibitors on the magnitude of swelling and the rate of the stress relaxation of these stones. The implications of our findings for the understanding of damage due to swelling of clays are discussed.Special Issue: Stone decay hazards  相似文献   
9.
This research combines field, laboratory and numerical investigations to estimate the development of a wetting front within a 1.2 m residual soil mantle on a steep forested slope during rainfall events. The field-monitored variations in matric suction due to rain-water infiltration during various events revealed that the maximum infiltration rate was much higher when the wetting front resided in the upper 20 cm of soil compared to the case when the wetting front advanced to depths > 20 cm. Laboratory investigations on soil hydraulic properties (i.e., soil water characteristic curve, and hydraulic conductivity) were useful to establish the parameters of a multilayer finite-element model for one-dimensional vertical infiltration. These parameters were subsequently calibrated by matching the predicted and field measured transient pore water pressure responses during actual rainstorms with irregular rainfall patterns. The calibrated simulation model was used to assess the migration of the wetting front under uniform rainfall with different intensities. Based on the numerical results, a hyperbolic equation was developed to predict the duration of uniform rainfall required for the propagation of wetting front to a certain depth for a given rainfall intensity. The proposed equation was subsequently tested against field-monitored advancements of the wetting front during real rainstorms with variable rainfall intensity.  相似文献   
10.
利用观测资料、GPCC再分析资料和第六次耦合模式比较计划(CMIP6)模拟结果,研究了我国西北地区近几十年及未来降水变化趋势。结果表明,1979—2019年我国西北干旱半干旱区降水在全年各季节均有显著增加,其中秋季增加最多。CMIP6模拟结果显示,随着全球变暖,我国西北地区降水在2015—2100年将继续增加。至21世纪末,在SSP2-4.5和SSP5-8.5情景下,我国西北地区年平均降水量将分别增加约13.7%(37 mm)和25.8%(78 mm),其中降水量增加最多的季节分别为夏季和春季。考虑到西北地区蒸发量也将随全球变暖而增加,模式平均的结果显示西北地区年平均净降水量在两种情景下的增幅分别约1.4%和4.9%,表明我国西北地区未来气候呈现显著的变湿趋势。进一步分析表明,西北地区未来降水增加可能与局地大气低层位势高度降低和上升运动加强有关。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号