首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   40篇
  免费   4篇
  国内免费   6篇
地球物理   12篇
地质学   36篇
综合类   2篇
  2022年   1篇
  2021年   4篇
  2020年   2篇
  2019年   5篇
  2018年   1篇
  2016年   1篇
  2015年   7篇
  2013年   1篇
  2012年   2篇
  2011年   1篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2006年   3篇
  2005年   1篇
  2004年   4篇
  2003年   1篇
  2001年   2篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1997年   2篇
  1996年   2篇
  1995年   1篇
  1993年   1篇
  1989年   1篇
排序方式: 共有50条查询结果,搜索用时 31 毫秒
1.
陈鹏  施炜 《地质论评》2015,61(3):536-546
古构造应力场恢复是重建区域地质演化历史的重要手段之一。断层作为地壳浅表发育的脆性变形构造,为恢复古构造应力场提供了重要地质条件。关于利用断层滑动矢量反演古构造应力场,前人进行了长期探索。目前其相关理论基础、研究方法与实际应用均取得重要进展。在断层滑动矢量反演古构造应力场的理论方面,改进的安德森模式描述了在发育先存薄弱带的情况下断层形成与演化的规律,克服了安德森模式只适用于均匀变形域的理论局限性;在研究方法方面,突破了在沉积盆地内部变形相对单一的限制,在造山带前陆或者叠加褶皱区等复杂变形区有效地开展了相关研究,并通过断层相关褶皱与同褶皱变形的滑动矢量分析,厘定出同造山作用的古构造应力场。这一方法在大巴山造山带强变形区得到了有效应用,为探讨其构造演化提供了基础。  相似文献   
2.
Brittle structures in rock of different ages can be used to establish the tectonic evolution of an orogenic belt through paleostress calculations. Micangshan is located at the southern margin of the Qinling orogenic belt,between the SE-trending Longmenshan fold-and-thrust belt and the arcuate Dabashan thrust-and-fold belt. Structural observations revealed that the dominant structures are reverse and strike-slip faults and folds with E–W and NE–SE trends. To increase knowledge of the tectonic evolution of the Micangshan anticlinorium,faults,joints,veins,and folds were measured at more than eighty sites. On the basis of structural analysis,it emerged that the multiphase paleostress fields became established after the oblique collision between the North and South China plates. The earliest stress field with N–S compression was established during the Micangshan uplift associated with the E–W trending faults and folds. Subsequently,a N–S extension occurred when the Qinling orogenic belt collapsed. Then NW–SE compression developed,with NE trending faults and folds forming in relation to Longmenshan thrusting toward southwest on the eastern margin of the Tibetan plateau. With the development of the arcuate Dabashan orogenic belt,the compression stress orientation of the Micangshan anticlinorium altered from NE–SW to E–W.  相似文献   
3.
阿穆尔板块西部边界在蒙古境内的空间位置尚不清楚,并且活动断层构造及其沿线地壳的应力状态研究较少。本文在沿此边界的三个区域——杭爱—肯特构造鞍部、布尔古特地块(鄂尔浑—土拉交汇处)和色楞格地块(包括色楞格凹陷和布伦—努鲁隆起),利用空间图像解译、地形起伏度分析、地质构造资料以及构造压裂和沿裂缝位移资料重建构造古应力,对活动断层进行研究。研究表明,活动断裂继承了古生代和中生代古构造的非均质性。这些断层沿着板块边界并不是单一的带,而是成簇的。它们的运动取决于走向:亚纬向断层是具有一定逆分量的左旋走滑断层,北西向断层是逆断层或逆冲断层,通常具有右旋走滑分量,海底断层是右旋走滑断层,北东向断层是正断层。位于色楞格凹陷和杭爱东部的断裂构造的活动始于上新世。逆断层和走滑断层与上新世情况不符,但多与更新世地貌相符,表明其活动年代较晚,为更新世时期。利用构造断裂和沿断裂的位移,重建活动断裂带变形末阶段的应力应变状态,结果表明断裂在最大挤压轴的北北东和北东方向上以压缩和走滑为主。只有在色楞格凹陷内,以扩张和走滑类型的应力张量为主,且在最小挤压轴的北西走向尤为显著。在南部,杭爱东部(鄂尔浑地堑)内有1个以扩张机制为主的局部区域,说明蒙古中部断裂在更新世—全新世阶段的活动以及现代地震活动主要受与印度斯坦和欧亚大陆汇聚过程相关的东北方向的附加水平挤压的控制。使研究区地壳产生走滑变形、贝加尔湖裂谷发散活动以及阿穆尔板块东南运动的另一个因素是东南方向软流圈流动对岩石圈底部的影响。阿穆尔板块和蒙古地块之间的边界在构造结构上是零碎的,代表了覆盖整个蒙古西部变形带的边缘部分。  相似文献   
4.
Bora Uzel 《Geodinamica Acta》2016,28(4):311-327
Linking of normal faults forms at all scales as a relay ramp during growth stages and represents the most efficient way for faults to lengthen during their progressive formation. Here, I study the linking of normal faulting along the active K?rka?aç Fault Zone within the west Anatolian extensional system to reconstruct fault interaction in time and space using both field- and computer-based data. I find that (i) connecting of the relay zone/ramp occurred with two breaching faults of different generations and that (ii) the propagation was facilitated by the presence of pre-existing structures, inherited from the ?zmir-Bal?kesir transfer zone. Hence, the linkage cannot be compared directly to a simple fault growth model. Therefore, I propose a combined scenario of both hangingwall and footwall fault propagation mechanisms that explain the present-day geometry of the composite fault line. The computer-based analyses show that the approximate slip rate is 0.38 mm/year during the Quaternary, and a NE–SW-directed extension is mainly responsible for the recent faulting along the K?rka?aç Fault Zone. The proposed structural scenario also highlights the active fault termination and should be considered in future seismic hazard assessments for the region that includes densely populated settlements.  相似文献   
5.
The superimposed basin must have undergone the changes of regional stress field. Study on the nature and switch of regional stress field of superimposed basin is very useful to understanding its stress state and tectonic events during its formation and evolution. As sensitive markers of small stress changes, joint and shear fracture, characterized by consistency of orientation over wide area, can be used to reconstruct paleostress state and its evolution. Detailed observations and analysis on the orientations, geometrical patterns, sequences of joints and shear fractures and their chronological relation to faults and folds show that, the NEE-SWW systematic joints and NNW-SSE systematic joints developed in the Mesozoic and Cenozoic strata are much more prominent than NW-SE systematic joints and shear fractures with different orientations. And the NWW-SEE and NW-SE systematic joints formed later than NEE-SWW systematic joints but earlier than shear fractures with different orientations. According to the relationships between joint and shear fractures and stress, the NEE-SWW systematic joints are inferred to result from lateral weak extension caused by the late Cretaceous regional uplift, while the NNW-SSE and NW-SE systematic joints are interpreted as syn-tectonic deformation relating to strong N-S compression in the Neogene. But some conjugate shear fractures occur probably due to sinistral strike-slip faulting in the Kuqa depression. At the beginning of the Neogene, the stress field changed and the maximal principal stress σ1 switched from vertical to horizontal.  相似文献   
6.
Three subsequent Tertiary paleostress fields that are deduced from fault-slip data for the eastern part of the Tajo Basin are analyzed by finite-element studies. The modelling results show that maximum horizontal stresses (SHmax) are mainly controlled by the geometry of the model limits and the boundary conditions applied. The models are used to test two hypotheses on the origin of the Altomira Range. A local stress field responsible for its formation (‘Altomira') can be modelled successfully by superposition in time and place of two major paleostress fields (‘Iberian' and ‘Guadarrama'). Stress trajectories have been modelled with respect to a homogeneous cover and heterogeneous basement to investigate the role of rheological contrasts between different basement blocks on the orientation of the stress field. Results of this kind of modelling suggest a mechanical decoupling between the cover and the basement, especially for the ‘Altomira' paleostress field.  相似文献   
7.
郯庐断裂带的演化与古应力场   总被引:47,自引:0,他引:47       下载免费PDF全文
万天丰 《地球科学》1995,20(5):526-534
通过系统研究郯庐断裂带两盘的构造形变和应力场,再配合断理解带内部构造研究,分析了断裂带的形成和演化过程。结果表明,断裂带经历了一次以走滑为主、两次以正断层活动为主、三次以逆断层活动为主的断裂活动,使断裂带内部结构异常复杂,形成反转构造,构成中国东部大型断裂带具有普遍意义的活动特征。  相似文献   
8.
对漳县含盐红层盆地的构造节理、褶皱等构造形迹进行野外观察、测量、分期配套,应用吴氏网赤平投影法来反演古构造应力场。分析表明,漳县红层盆地白垩系沉积地层形成后至少经历了4期构造活动:第一期构造应力场的最大主压应力方向为NW-SE向,第二期构造应力场的最大主压应力方向为NE-SW向,第三期构造应力场的最大主压应力方向近E-W向,第四期构造应力场的最大主压应力方向近S-N向,4期构造应力场中间主压力轴(δ2)多近于直立。反演结果显示,该区域自白垩系沉积后区域构造特征以走滑作用为主。  相似文献   
9.
The southern part of the Outer Zone of Southwest Japan including the Kii peninsula belongs to the tectonic ‘shadow zone’, where fewer conspicuous active faults and less Quaternary sediments develop than in the Nankai subduction zone and Inner Zone of Southwest Japan. In order to study the paleostress sequence of the Kii peninsula, we analyzed fault‐slip data and tension gashes at pilot sites of Early–Middle Miocene forearc sediments and Late Cretaceous accretionary complex. According to the results, six faulting events are reconstructed in sequence: (i) east–west extension (normal faulting); (ii) east–west compression and north–south extension (strike‐slip faulting); (iii) NNW–SSE compression and ENE–WSW extension (strike‐slip faulting); (iv) northeast–southwest compression and northwest–southeast extension (strike‐slip faulting); (v) WNW–ESE compression (strike‐slip or reverse faulting); and (vi) NNE–SSW extension. The north–south to NNW–SSE trending dyke swarm of Middle Miocene age in the Kii peninsula is thought to be related to Event 3, implying that Event 3 was active at least during the Middle Miocene. Because Event 6 is recognized solely at a site, the overall latest faulting event seems to be Event 5. Assuming that the compression results from the motion of the crust or plate, the compression direction of Event 5 is in good accordance with the present‐day WNW crustal velocity vectors of the Kii peninsula. The stress trajectory map of Southeast Korea and Southwest Japan reveals that the current compression directions of the Kii peninsula correspond to the combinatory stress fields of the Himalayan and Philippine Sea tectonic domains.  相似文献   
10.
Cosserat extension of the Gauss stress-strain inversion method and multiple-slip method (MSM) are used to analyse 18 examples of natural wedge faulting observed in Slovenia. Based on additional numerical tests we show that kinematic incompatibility of slip along intersecting faults (wedges) has a significant effect on the state of stress in the Earth's crust. The slip direction along intersecting faults (wedges) can only be subparallel to the intersection direction between the faults. The normal stress on the wedges is then equal to the intermediate principal stress (eigenvalue) of the symmetric part of the stress tensor. This equality is very fundamental and could potentially be interpreted as a new law of faulting along tectonic wedges and non-planar faults. In the Cosserat theory of wedge faulting we also define two stress criteria, these are the weak and the strong stress conditions. The weak stress condition is related to the frictional reactivation of the wedges. It defines two limit values of the stress parameter and intermediate principal stress of the symmetric part of the stress tensor. The strong stress condition is related to the brittle faulting along tectonic wedges. It relates the angle of internal friction to the value of the stress parameter and the intermediate principal stress of the symmetric part of the stress tensor. For the value of the angle of internal friction larger than zero, the stress parameter is less than 0.5, which is in agreement with numerical and empirical observations described in this paper.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号