首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   68篇
  免费   4篇
  国内免费   6篇
地球物理   51篇
地质学   23篇
海洋学   2篇
综合类   1篇
自然地理   1篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2018年   2篇
  2014年   1篇
  2012年   1篇
  2010年   1篇
  2009年   10篇
  2008年   10篇
  2007年   5篇
  2006年   3篇
  2005年   6篇
  2004年   7篇
  2002年   1篇
  2000年   4篇
  1999年   4篇
  1998年   1篇
  1997年   4篇
  1996年   3篇
  1995年   5篇
  1994年   2篇
  1993年   1篇
  1992年   2篇
排序方式: 共有78条查询结果,搜索用时 31 毫秒
1.
郑世帅  徐夕生 《岩石学报》2021,37(12):3712-3734
破火山内出露的火山岩与浅成侵入岩为硅质岩浆演化研究提供了一个重要窗口,从而备受关注。小雄破火山内的火山-侵入杂岩是中国东南沿海晚白垩世岩浆活动的典型代表,包括小雄组火山岩(K2x)与两类侵入岩(花岗斑岩、正长斑岩)。本文以小雄火山-侵入杂岩为研究对象,开展了系统的锆石U-Pb年代学、岩石学和地球化学研究,旨在深入探讨破火山内火山岩与侵入岩之间的成因联系和岩浆演化过程。系统的LA-ICP-MS 锆石U-Pb年代学研究表明,小雄组火山岩形成于98~88Ma,并具有多期次喷发的特点,可分为下段、中段和上段,年龄分别为98~96Ma(K2x1)、95~92Ma(K2x2)、~ 88Ma(K2x3)。小雄花岗斑岩形成年龄为90Ma;正长斑岩形成稍晚,约88Ma。与下段流纹质玻屑凝灰岩的Nd-Hf同位素组成[εNdt)=-8.3~-7.2, εHft)=-11.8~-7.2]相比,中段流纹岩要更为亏损[εNdt)=-5.84~-5.32, εHft)=-10.1~-0.5]。研究表明,小雄组流纹质火山岩的母岩浆可能起源于发生在深部岩浆房中渐进的壳幔相互作用,中段流纹岩的源区混入了更多的亏损幔源组分。中段流纹岩与花岗斑岩具有相似的Nd-Hf同位素组成,以及 "互补"的微量元素地球化学特征,由发生在浅部岩浆房的分离结晶作用和堆晶作用所制约。值得注意的是,正长斑岩与花岗斑岩并不存在直接的成因演化关系,两者应是不同的起源。不同的正长斑岩岩株具有高度一致的结晶年龄、微量元素特征以及Nd-Hf同位素组成,以上特征均表明小雄破火山内的正长斑岩具有相同的起源。正长斑岩母岩浆起源于富集岩石圈地幔的部分熔融,岩浆源区混入了来自亏损的软流圈地幔组分,其地球化学成分变化主要受"普通辉石+磷灰石+钛铁矿"的分离结晶所控制。  相似文献   
2.
中朝边境天池破火山口湖底地形多波束测深探测   总被引:4,自引:3,他引:1  
为调查天池破火山口湖的基本参数和湖底地形特征,研究破火山口的内部构造、破火山口的组合样式和垮塌堆积分布,本文采用多波束测深方法,对天池湖底地形进行了探测。探测结果显示:天池最大水深值为373.2m,天池水域边界实测周长为13.44km,天池湖水面面积9.4km~2,天池总蓄水量约为19.88×10~8m~3。天池周边分布4个温泉,温度为7~47℃。根据湖底地形推断,现今的天池破火山口形成于千年大喷发。其后,在天池西侧形成一个喷火口,东侧形成一个熔岩丘。天池湖底存在5个较大的破火山口内壁垮塌堆积区,但在湖底未见熔岩流。天池边缘出露的温泉点对应环状断裂,同时反映深部存在岩浆体。  相似文献   
3.
The 1991 Pinatubo eruption left 5–6 km3 of debris on the volcano slopes, much of which has been mobilized into large lahars in the following rainy seasons. Also during the eruption, collapse, localized in part along preexisting faults, left a caldera 2.5 km in diameter that almost immediately began to accumulate a 1.6 × 108 m3 lake. By 2001, the water had risen to the fault-controlled Maraunot Notch, the lowest, northwestern portion of the caldera rim comprising the physiographic sill of the Caldera Lake. That year, a narrow artificial canal dug into an old volcanic breccia underlying the outlet channel failed to induce a deliberate lake breakout, but discharge from heavy rains in July 2002 rapidly deepened the notch by 23 m, releasing an estimated 6.5 × 107 m3 of lake water that bulked up into lahars with a volume well in excess of 1.6 × 108 m3. Lakes in other volcanoes have experienced multiple breakouts, providing practical motivation for this study. Fieldwork and high-resolution digital elevation models reveal andesites and ancient lacustrine deposits, strongly fractured and deformed along a segment of the Maraunot Fault, a prominent, steeply dipping, left-lateral fault zone that trends N35°–40°W within and parallel to the notch. Seismicity in 1991 demonstrated that the Maraunot Fault is still active. The fault zone appears to have previously been the erosional locus for a large channel, filled with avalanche or landslide deposits of an earlier eruption that were exhumed by the 2002 breakout floods. The deformed lacustrine sediments, with an uncalibrated 14C age of 14,760 ± 40 year BP from a single charcoal sample, attest to the existence of an earlier lake, possibly within the Tayawan Caldera, rim remnants of which survive as arcuate escarpments. That lake may well have experienced one or more ancient breakouts as well. The 2002 event greatly reduced the possibility of another such event by scouring away the erodible breccia, leaving less erodible fractured andesites and lacustrine rocks, and by enlarging the outlet channel and its discharge capacity. Several lines of evidence indicate, however, that future lahar-generating lake breakouts at the notch may keep populations of Botolan municipality downstream at risk: (1) a volume of 9.5 × 107 m3 of lake water remains perched 0.8 km above sea level; (2) seismicity in 1991 demonstrated that the Maraunot Fault is still active and movements of sufficient magnitude could enlarge the outlet and the discharge through it; (3) more likely, however, with or without earthquake activity, landslides from the steep to overhanging channel walls could block the channel again, and a major rainstorm could then cause a rise in lake level and sudden breakouts; (4) intrusion of a new dome into the bottom of the lake, possibly accompanied by phreatic explosions, could expel large volumes of lahar-generating water.  相似文献   
4.
New deformation data from the Askja volcano, Iceland, show that the volcano's caldera has been deflating continuously for over 20 years, and confirm that the rate of subsidence is slowing down. The decay in subsidence rate can be fitted with a function of the form e t / τ , where τ is 39 years. Reanalysis of GPS data from 1993–1998 show that these data can be fitted with a model calling for two Mogi point sources, one shallow, and another one much deeper (16.2 km depth). Pressure decrease occurs in both sources. The deeper source is responsible for observed horizontal contraction towards Askja at distances that cannot be explained by the shallower source. Plate spreading of 19 mm/year distributed evenly over about 100-km-wide zone is also favoured by the data.  相似文献   
5.
The Miocene–Quaternary Jemez Mountains volcanic field(JMVF) is the site of the Valles caldera and associated BandelierTuff. Caldera formation was preceded by > 10 Myr of volcanismdominated by intermediate composition rocks (57–70% SiO2)that contain components derived from the lithospheric mantleand Precambrian crust. Simple mixing between crust-dominatedsilicic melts and mantle-dominated mafic magmas, fractionalcrystallization, and assimilation accompanied by fractionalcrystallization are the principal mechanisms involved in theproduction of these intermediate lavas. A variety of isotopicallydistinct crustal sources were involved in magmatism between13 and 6 Ma, but only one type (or two very similar types) ofcrust between 6 and 2 Ma. This long history constitutes a recordof accommodation of mantle-derived magma in the crust by meltingof country rock. The post-2 Ma Bandelier Tuff and associatedrhyolites were, in contrast, generated by melting of hybridizedcrust in the form of buried, warm intrusive rocks associatedwith pre-6 Ma activity. Major shifts in the location, styleand geochemical character of magmatism in the JMVF occur withina few million years after volcanic maxima and may correspondto pooling of magma at a new location in the crust followingsolidification of earlier magma chambers that acted as trapsfor basaltic replenishment. KEY WORDS: crustal anatexis; fractional crystallization; Jemez Mountain Volcanic Field; Valles Caldera; radiogenic isotopes; trace elements  相似文献   
6.
Mud volcanoes recently discovered on the offshore Calabrian Arc are investigated at two sites 60 km apart, in water depths of 1650--2300 m, using swath bathymetry, 2D&3D multichannel seismic and cores. The seabed and subsurface data provide information on their formation and functioning in relation to tectonic activity during the rapid Plio-Quaternary advance of the accretionary prism. Fore-arc extension and thrust-belt compression are seen to have involved two main phases of activity, separated by a regional unconformity recording a mid-Pliocene (3.5–3.0 Ma) tectonic reorganization. The two sites of mud volcanism lie in contrasting tectonic settings (inner fore-arc basin vs central fold-and-thrust belt) and record differing forms of seabed extrusive activity (twin mud cones and a caldera vs a broad mud pie). At both sites, subsurface data show that mud volcanism took place throughout the second tectonic phase, since the late Pliocene; differing forms of mud extrusion were accompanied by subsidence to form depressions beneath and within extrusive edifices up to 1.5 km thick. The basal subsidence depressions point to sources within the succession of thrusts underlying the inner to central Arc, consistent with microfossils within cored mud breccias from both sites that are derived from strata as old as Late Cretaceous.  相似文献   
7.
Three major rhyolite systems in the northeastern Davis and adjacent Barrilla Mountains include lava units that bracketed a large pantelleritic ignimbrite (Gomez Tuff) in rapid eruptions spanning 300,000 years. Extensive silicic lavas formed the shields of the Star Mountain Formation (37.2 Ma-K/Ar; 36.84 Ma 39Ar/40Ar), and the Adobe Canyon Formation (37.1 Ma-K/Ar; 36.51-39Ar/40Ar). The Gomez Tuff (36.6 Ma-K/Ar; 36.74-39Ar/40Ar) blanketed a large region around the 18×24 km diameter Buckhorn caldera, within which it ponded, forming sections up to 500 m thick. Gomez eruption was preceded by pantelleritic rhyolite domes (36.87, 36.91 Ma-39Ar/40Ar), some of which blocked movement of Star Mountain lava flows. Following collapse, the Buckhorn caldera was filled by trachyte lava. Adobe Canyon rhyolite lavas then covered much of the region. Star Mountain Formation (~220 km3) is composed of multiple flows ranging from quartz trachyte to mildly peralkalic rhyolite; three major types form a total of at least six major flows in the northeastern Davis Mountains. Adobe Canyon Formation (~125 km3) contains fewer flows, some up to 180 m thick, of chemically homogenous, mildly peralkalic comendite, extending up to 40 km. Gomez Tuff (~220 km3) may represent the largest known pantellerite. It is typically less than 100 m thick in extra-caldera sections, where it shows a pyroclastic base and top, although interiors are commonly rheomorphic, containing flow banding and ramp structures. Most sections contain one cooling unit; two sections contain a smaller, upper cooling unit. Chemically, the tuff is fairly homogeneous, but is more evolved than early pantelleritic domes. Overall, although Davis Mountains silicic units were generated through open system processes, the pantellerites appear to have evolved by processes dominated by extensive fractional crystallization from parental trachytes similar to that erupted in pre- and post-caldera lavas. Comparison with the Pantelleria volcano suggests that the most likely parental magma for the Buckhorn series is transitional basalt, similar to that erupted in minor, younger Basin and Range volcanism after about 24 Ma. Roughly contemporaneous mafic lavas associated with the Buckhorn caldera appear to have assimilated or mixed with crustal melts, and, generally, may not be regarded as mafic precursors of the Buckhorn silicic rocks, They thus form a false Daly Gap as opposed to the true basalt/trachyte Daly gap of Pantelleria. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. This paper constitutes part of a special issue dedicated to Bill Bonnichsen on the petrogenesis and volcanology of anorogenic rhyolites.  相似文献   
8.
A new pyroclastic stratigraphy is presented for the island of Ischia, Italy, for the period ∼75–50 ka BP. The data indicate that this period bore witness to the largest eruptions recorded on the island and that it was considerably more volcanically active than previously thought. Numerous vents were probably active during this period. The deposits of at least 10 explosive phonolite to basaltic-trachyandesite eruptions are described and interpreted. They record a diverse range of explosive volcanic activity including voluminous fountain-fed ignimbrite eruptions, fallout from sustained eruption columns, block-and-ash flows, and phreatomagmatic eruptions. Previously unknown eruptions have been recognised for the first time on the island. Several of the eruptions produced pyroclastic density currents that covered the whole island as well as the neighbouring island of Procida and parts of the mainland. The morphology of Ischia was significantly different to that seen today, with edifices to the south and west and a submerged depression in the centre. The largest volcanic event, the Monte Epomeo Green Tuff (MEGT) resulted in caldera collapse across all or part of the island. It is shown to comprise at least two thick intracaldera ignimbrite flow-units, separated by volcaniclastic sediments that were deposited during a pause in the eruption. Extracaldera deposits of the MEGT include a pumice fall deposit emplaced during the opening phases of the eruption, a widespread lithic lag breccia outcropping across much of Ischia and Procida, and a distal ignimbrite in south-west Campi Flegrei. During this period the style and magnitude of volcanism was dictated by the dynamics of a large differentiated magma chamber, which was partially destroyed during the MEGT eruption. This contrasts with the small-volume Holocene and historical effusive and explosive activity on Ischia, the timing and distribution of which has been controlled by the resurgence of the Monte Epomeo block. The new data contribute to a clearer understanding of the long-term volcanic and magmatic evolution of Ischia.  相似文献   
9.
New 40Ar-39Ar geochronology, bulk rock geochemical data, and physical characteristics for representative stratigraphic sections of rhyolite ignimbrites and lavas from the west-central Snake River Plain (SRP) are combined to develop a coherent stratigraphic framework for Miocene silicic magmatism in this part of the Yellowstone ‘hotspot track’. The magmatic record differs from that in areas to the west and east with regard to its unusually large extrusive volume, broad lateral scale, and extended duration. We infer that the magmatic systems developed in response to large-scale and repeated injections of basaltic magma into the crust, resulting in significant reconstitution of large volumes of the crust, wide distribution of crustal melt zones, and complex feeder systems for individual eruptive events. Some eruptive episodes or ‘events’ appear to be contemporaneous with major normal faulting, and perhaps catastrophic crustal foundering, that may have triggered concurrent evacuations of separate silicic magma reservoirs. This behavior and cumulative time-composition relations are difficult to relate to simple caldera-style single-source feeder systems and imply complex temporal-spatial development of the silicic magma systems. Inferred volumes and timing of mafic magma inputs, as the driving energy source, require a significant component of lithospheric extension on NNW-trending Basin and Range style faults (i.e., roughly parallel to the SW–NE orientation of the eastern SRP). This is needed to accommodate basaltic inputs at crustal levels, and is likely to play a role in generation of those magmas. Anomalously high magma production in the SRP compared to that in adjacent areas (e.g., northern Basin and Range Province) may require additional sub-lithospheric processes. Electronic supplementary material The online version of this article (doi: ) contains supplementary material, which is available to authorized users. This paper constitutes part of a special issue dedicated to Bill Bonnichsen on the petrogenesis and volcanology of anorogenic rhyolites.  相似文献   
10.
A 17-benchmark geodetic network in the volcanic area of the Teide Caldera, Canary Islands has been utilised several times since 1982 to detect crustal movements associated with volcanic activity within the network, as well as a procedure for solving configuration problems. The network is located on the mid-western side of the Caldera, where there are two different morphological zones that both have benchmarks. The authors performed a sensitivity test of this geodetic network for volcano monitoring purposes. To do so, we use a deformation model to calculate surface displacement caused by a dike intrusion in a homogenous half space. The depth and location of dike are changed to study the variation of the effects produced (displacements). The size and location of the intruded dike are found to play a major role in determining both the displacement pattern and magnitude. When the dike is close to the surface, there is an inversion of the surface displacement pattern and very large surface displacement at certain benchmarks. Such phenomena can serve as precursors of such dike eruptions. Our study show a clear need to extend the existing geodetic network to cover the full island for volcano monitoring purposes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号