首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   1篇
  国内免费   4篇
地球物理   12篇
地质学   5篇
海洋学   3篇
  2023年   1篇
  2022年   1篇
  2020年   2篇
  2019年   2篇
  2017年   5篇
  2016年   1篇
  2014年   2篇
  2013年   2篇
  2011年   3篇
  2010年   1篇
排序方式: 共有20条查询结果,搜索用时 15 毫秒
1.
The temporal and spatial discontinuity of microplastic sampling data restricts the investigation on their source, sink, transport pathway and trend. Numerical simulation combined with sampling investigation can comprehensively study the effects of microplastic characteristics, meteorology and hydrodynamics on the distribution and transportation of microplastics. In this paper, the studies of microplastic numerical simulation were reviewed from the aspects of numerical simulating research and their applications in microplastic tranportation, and the results were summarized as follows: The construction of the main driving force (current); the influence of environmental factors, such as wind, waves, topography and extreme sea conditions on the properties of microplastics with different characteristics (particle size, density, shape) and their tranportation; the application of numerical simulation in the study of microplastic removal. Based on progress on the study of numerical simulation of marine microplastics, the future directions were pointed out that the further simulating studies should focuson the spatio-temporal distribution and evolvement of microplastics by combining sampling data and numerical model, the simulating research on the relationship between microplastic parameters (roughness, wind drag coefficient, settling rate, resuspension rate and biofouling rate) and (meteorological and ocean) dynamic condition. Moreover, the results of simulating sensitivity experiments should be compared with sampling and laboratory testing data to improve the empirical parameters and formulas of numerical model.  相似文献   
2.
Microplastics as contaminants in the marine environment: a review   总被引:15,自引:0,他引:15  
Since the mass production of plastics began in the 1940s, microplastic contamination of the marine environment has been a growing problem. Here, a review of the literature has been conducted with the following objectives: (1) to summarise the properties, nomenclature and sources of microplastics; (2) to discuss the routes by which microplastics enter the marine environment; (3) to evaluate the methods by which microplastics are detected in the marine environment; (4) to assess spatial and temporal trends of microplastic abundance; and (5) to discuss the environmental impact of microplastics. Microplastics are both abundant and widespread within the marine environment, found in their highest concentrations along coastlines and within mid-ocean gyres. Ingestion of microplastics has been demonstrated in a range of marine organisms, a process which may facilitate the transfer of chemical additives or hydrophobic waterborne pollutants to biota. We conclude by highlighting key future research areas for scientists and policymakers.  相似文献   
3.
Plastic debris is known to undergo fragmentation at sea, which leads to the formation of microscopic particles of plastic; the so called ‘microplastics’. Due to their buoyant and persistent properties, these microplastics have the potential to become widely dispersed in the marine environment through hydrodynamic processes and ocean currents. In this study, the occurrence and distribution of microplastics was investigated in Belgian marine sediments from different locations (coastal harbours, beaches and sublittoral areas).Particles were found in large numbers in all samples, showing the wide distribution of microplastics in Belgian coastal waters. The highest concentrations were found in the harbours where total microplastic concentrations of up to 390 particles kg−1 dry sediment were observed, which is 15-50 times higher than reported maximum concentrations of other, similar study areas.The depth profile of sediment cores suggested that microplastic concentrations on the beaches reflect the global plastic production increase.  相似文献   
4.
This paper reports baseline levels of litter (macro, meso and microplastics) in sediments collected from different areas of the Croatian MPA of the Natural Park of Tela??ica bay (Adriatic Sea, GSA n. 17). The distribution of total abundance according to size, for all analysed locations evidences that microplastics are the dominant fraction concerning item's numbers. In all analysed samples no macroplastics were found, while microplastics are 88.71% and mesoplastics are 11.29% of the total.  相似文献   
5.
6.
Assessment of marine debris on the Belgian Continental Shelf   总被引:2,自引:0,他引:2  
A comprehensive assessment of marine litter in three environmental compartments of Belgian coastal waters was performed. Abundance, weight and composition of marine debris, including microplastics, was assessed by performing beach, sea surface and seafloor monitoring campaigns during two consecutive years. Plastic items were the dominant type of macrodebris recorded: over 95% of debris present in the three sampled marine compartments were plastic. In general, concentrations of macrodebris were quite high. Especially the number of beached debris reached very high levels: on average 6429 ± 6767 items per 100 m were recorded. Microplastic concentrations were determined to assess overall abundance in the different marine compartments of the Belgian Continental Shelf. In terms of weight, macrodebris still dominates the pollution of beaches, but in the water column and in the seafloor microplastics appear to be of higher importance: here, microplastic weight is approximately 100 times and 400 times higher, respectively, than macrodebris weight.  相似文献   
7.
On June 2013 a workshop at the University of Siena (Italy) was organized to review current knowledge and to clarify what is known, and what remains to be investigated, concerning plastic litter in the sea. The content of the workshop was designed to contribute further to the European Marine Strategy Framework Directive (MSFD) following an inaugural workshop in 2012. Here we report a number of statements relevant to policymakers and scientists that was overwhelming agreement from the participants. Many might view this as already providing sufficient grounds for policy action. At the very least, this early warning of the problems that lie ahead should be taken seriously, and serve as a stimulus for further research.  相似文献   
8.
Microplastics pose a threat to coastal environments due to their capacity to adsorb persistent organic pollutants (POPs). These particles (less than 5 mm in size) are potentially dangerous to marine species due to magnification risk over the food chain. Samples were collected from two Portuguese beaches and sorted in four classes to relate the adsorption capacity of pollutants with color and age. Polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and DDTs were analysed on pellets through gas chromatography mass spectrometry (GC-MS), and types of plastic were identified using Fourier transformed infra-red spectroscopy (micro-FTIR). Microplastics were mostly polyethylene and polypropylene. Regarding sizes, some fibres ranged from 1 to 5 μm in diameter and were 500 μm in length. The majority of samples collected had sizes above 200 μm. Black pellets, unlike aged pellets, had the highest concentrations of POPs except for PAHs in Fonte da Telha beach. PAHs with higher concentrations were pyrene, phenantrene, chrysene and fluoranthene. Higher concentrations of PCBs were found for congeners 18, 31, 138 and 187. Further investigation is necessary to understand the relationship between plastic degradation and adsorption for different pollutants.  相似文献   
9.
Microplastics in marine environment are global environmental issue and challenge and have received an extensive international concern. At present, most of researches focus on the investigation of microplastic abundance in the ocean surface water, and there is insufficient understanding of the distribution and transport processes of microplastics in the deep-sea environment. This paper reviewed marine microplastic studies carried out in the last decade, and summarized the source, global distribution and transport processes of microplastics. Field investigations showed that both surface water and water column were important accumulation areas for microplastics, while deep-sea surface sediments were final sinks for microplastic deposition and accumulation. Transport of microplastics to the deep sea included two modes: vertical settlement and lateral transport. Laboratory simulation showed that the sinking rate of microplastic particles in the ocean changed between 300 and 1 000 meters per day, and the sinking process was not solely controlled by particle physical properties such as particle density, but also influenced by ocean dynamic process, biological action and marine snow aggregation. Microplastics deposited on the seafloor could migrate laterally towards the deep sea with resuspended sediments, which were related to internal waves, deep-sea turbidity current or climatic events. However, there remain the key knowledge gaps in uncertain speed and quantity of microplastics moving to the deep sea, which is not conducive to the comprehensive understanding of the microplastic transport process from source to sink. Therefore, it is recommended to observe the vertical sinking flux of microplastics with layered sediment traps in order to study the source-to-sink transport processes of microplastics in deep-sea environment.  相似文献   
10.
文章根据我国南海区海岸带、河口、内陆径流及海域微塑料污染的相关调查资料,整理南海区表层水和沉积物中微塑料的污染现状,包括微塑料丰度、形状和聚合物类型等分布特征,归纳微塑料的潜在来源途径,提出健全塑料管理体系的建议,从源头上减少塑料的产生和排放,最后提出应深入研究微塑料对海洋生态系统的影响,以建立对微塑料的风险评估框架。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号