首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   695篇
  免费   144篇
  国内免费   80篇
测绘学   26篇
大气科学   10篇
地球物理   217篇
地质学   476篇
海洋学   131篇
天文学   1篇
综合类   29篇
自然地理   29篇
  2024年   1篇
  2023年   7篇
  2022年   20篇
  2021年   6篇
  2020年   15篇
  2019年   13篇
  2018年   6篇
  2017年   45篇
  2016年   31篇
  2015年   22篇
  2014年   44篇
  2013年   40篇
  2012年   26篇
  2011年   56篇
  2010年   58篇
  2009年   54篇
  2008年   35篇
  2007年   52篇
  2006年   38篇
  2005年   24篇
  2004年   37篇
  2003年   31篇
  2002年   43篇
  2001年   20篇
  2000年   45篇
  1999年   11篇
  1998年   25篇
  1997年   15篇
  1996年   25篇
  1995年   13篇
  1994年   13篇
  1993年   10篇
  1992年   8篇
  1991年   2篇
  1990年   4篇
  1989年   3篇
  1988年   5篇
  1987年   1篇
  1986年   2篇
  1985年   8篇
  1984年   3篇
  1983年   2篇
排序方式: 共有919条查询结果,搜索用时 31 毫秒
1.
《China Geology》2020,3(4):633-642
Oil and gas resources are short in Pakistan and no commercially viable oil and gas sources have been yet discovered in its offshore areas up to now. In this study, the onshore-offshore stratigraphic correlation and seismic data interpretation were conducted to determine the oil and gas resource potential in the Offshore Indus Basin, Pakistan. Based on the comprehensive analysis of the results and previous data, it is considered that the Cretaceous may widely exist and three sets of source rocks may be developed in the Offshore Indus Basin. The presence of Miocene mudstones has been proven by drilling to be high-quality source rocks, while the Cretaceous and Paleocene–Eocene mudstones are potential source rocks. Tectonic-lithologic traps are developed in the northwestern part of the basin affected by the strike-slip faults along Murray Ridge. Furthermore, the Cretaceous and Paleocene–Eocene source rocks are thick and are slightly affected by volcanic activities. Therefore, it can be inferred that the northwestern part of Offshore Indus Basin enjoys good prospects of oil and gas resources.  相似文献   
2.
地震油气储层的小样本卷积神经网络学习与预测   总被引:2,自引:0,他引:2       下载免费PDF全文
地震储层预测是油气勘探的重要组成部分,但完成该项工作往往需要经历多个环节,而多工序或长周期的研究分析降低了勘探效率.基于油气藏分布规律及其在地震响应上所具有的特点,本文引入卷积神经网络深度学习方法,用于智能提取、分类并识别地震油气特征.卷积神经网络所具有的强适用性、强泛化能力,使之可以在小样本条件下,对未解释地震数据体进行全局优化提取特征并加以分类,即利用有限的已知含油气井段信息构建卷积核,以地震数据为驱动,借助卷积神经网络提取、识别蕴藏其中的地震油气特征.将本方案应用于模型数据及实际数据的验算,取得了预期效果.通过与实际钻井信息及基于多波地震数据机器学习所预测结果对比,本方案利用实际数据所演算结果与实际情况有较高的吻合度.表明本方案具有一定的可行性,为缩短相关环节的周期提供了一种新的途径.  相似文献   
3.
《China Geology》2020,3(4):575-590
The sequence stratigraphic framework of Shanxi Formation in the northeast Zhoukou Depression was established based on detailed sequence stratigraphical and sedimentological analysis by utilizing the logging and core data of six wells drilled in the eastern tectonic unit of Zhoukou Depression. It was divided into three third-order sequences, namely SQs1, SQs2, and SQs3 from bottom to top. Each sequence can be divided into a transgressive system tract (TST) and a highstand system tract (HST). Furthermore, four sequence boundaries and three maximum flooding surfaces were identified, and they are the bottom interface SBs and maximum flooding surface mfss1 of SQs1, the bottom interface SBs1 and maximum flooding surface mfss2 of SQs2, the bottom interface SBs3 and maximum flooding surface mfss3 of SQs3, and the top interface SBx from bottom to top. Carbonate tidal flat –clastic tidal flat sedimentary system developed in Shanxi Formation in the northeast Zhoukou Depression (also referred to as the study area) under the control of regression. Meanwhile, four sedimentary microfacies were identified in the sedimentary system, which are lime-mud flats, sand flats, mixed flats, and mud flats. The transgression in the study area occurred from the southeast to the northwest. Therefore, the northwestern part is the seaward side, and the southeastern part is the landward side. As revealed by relevant drilling data, SQs1 of the Shanxi Formation is characterized by the development of limestone and carbonaceous mudstone, with limestone, dark mudstone, and carbonaceous mudstone mainly developing. Meanwhile, lime-mud flats were mainly deposited in it. During the periods of SQs2 and SQs3, the sedimentary environment of the study area changed from the carbonate tidal flats to clastic tidal flats as the coastline migrated towards the sea. In these periods, sand flats mainly developed near the maximum flooding surfaces and were relatively continuous in the eastern and southern parts of the transgressive system tract; mixed flats were relatively continuous in the western and northern parts of the transgressive system tract as well as the eastern and southern parts of the highstand system tract; mud flats widely developed in the highstand system tract. Peat flats mainly developed in the period of HSTs2, with coal seams relatively developing in the southeastern part of the study area as revealed by drilling data. The peat flats in SQs2 are favorable hydrocarbon source layers, the lime-mud flats in SQs1 and sand flats formed in the transgression periods of SQs2 and SQs3 constitute favorable hydrocarbon reservoirs, and the mud flats form in the transgressions periods serve as favorable cap rocks. Therefore, the study area features a reservoir-cap assemblage for self-generating and self-storing of hydrocarbon, and the southeastern part of the study area can be taken as a favorable exploration area.  相似文献   
4.
基于我国自主研发的首颗分辨率达到1m的C频段多极化合成孔径雷达高分三号卫星(GF-3),通过典型溢油案例定性和定量地比较了双极化与单极化图像预处理性能,分析了不同的极化组合对海面油膜识别结果的影响。得出结论:同向极化与异向极化成像差异明显,VV极化明显比VH极化回波强度高,并且油膜识别度较高;相反,双极化VHVV方式与单极化VH方式图像效果区别不大,双极化方式并不能绝对性地提高地物识别度。  相似文献   
5.
为了探索康滇地轴以西地质条件复杂地区的油气资源潜力,通过面积性地质调查工作与钻孔资料、分析测试资料结合,对盐源—宁蒗地区下泥盆统黑色页岩开展综合研究。研究表明:盐源—宁蒗地区早泥盆世古地理主要受康滇古陆及古特提斯构造域的构造活动控制,靠近金-箐断裂地区发育滨岸-潮坪相,古隆起围限区出现局限海湾相,远离隆起的西北部地区发育台地、陆棚、盆地相;大瓜坪组(早泥盆世晚期)发育黑色页岩(局部地区发育硅质泥岩),在羊排喜—岩口一带分布较为稳定、厚度大(20~100m),普遍含钙质,有机碳含量较高,具较高的脆性矿物含量,热演化程度适中,是重要的烃源岩和页岩气富集有利层位;黑色页岩主要发育在局限海湾环境中,羊排喜—岩口—茅坪子一线是盐源—宁蒗地区黑色页岩富集区。  相似文献   
6.
《China Geology》2021,4(1):147-177
The Qinghai-Tibet Plateau (also referred to as the Plateau) has long received much attention from the community of geoscience due to its unique geographical location and rich mineral resources. This paper reviews the aeromagnetic surveys in the Plateau in the past 60 years and summarizes relevant research achievements, which mainly include the followings. (1) The boundaries between the Plateau and its surrounding regions have been clarified. In detail, its western boundary is restricted by West Kunlun-Altyn Tagh arc-shaped magnetic anomaly zone forming due to the arc-shaped connection of the Altyn Tagh and Kangxiwa faults and its eastern boundary consists of the boundaries among different magnetic fields along the Longnan (Wudu)-Kangding Fault. Meanwhile, the fault on the northern margin of the Northern Qilian Mountains serves as its northern boundary. (2) The Plateau is mainly composed of four orogens that were stitched together, namely East Kunlun-Qilian, Hoh-Xil-Songpan, Chamdo-Southwestern Sanjiang (Nujiang, Lancang, and Jinsha rivers in southeastern China), and Gangdese-Himalaya orogens. (3) The basement of the Plateau is dominated by weakly magnetic Proterozoic metamorphic rocks and lacks strongly magnetic Archean crystalline basement of stable continents such as the Tarim and Sichuan blocks. Therefore, it exhibits the characteristics of unstable orogenic basement. (4) The Yarlung-Zangbo suture zone forming due to continent-continent collisions since the Cenozoic shows double aeromagnetic anomaly zones. Therefore, it can be inferred that the Yarlung-Zangbo suture zone formed from the Indian Plate subducting towards and colliding with the Eurasian Plate twice. (5) A huge negative aeromagnetic anomaly in nearly SN trending has been discovered in the middle part of the Plateau, indicating a giant deep thermal-tectonic zone. (6) A dual-layer magnetic structure has been revealed in the Plateau. It consists of shallow magnetic anomaly zones in nearly EW and NW trending and deep magnetic anomaly zones in nearly SN trending. They overlap vertically and cross horizontally, showing the flyover-type geological structure of the Plateau. (7) A group of NW-trending faults occur in eastern Tibet, which is intersected rather than connected by the nearly EW trending that develop in middle-west Tibet. (8) As for the central uplift zone that occurs through the Qiangtang Basin, its metamorphic basement tends to gradually descend from west to east, showing the form of steps. The Qiangtang Basin is divided into the northern and southern part by the central uplift zone in it. The basement in the Qiangtang Basin is deep in the north and west and shallow in the south and west. The basement in the northern Qiangtang Basin is deep and relatively stable and thus is more favorable for the generation and preservation of oil and gas. Up to now, 19 favorable tectonic regions of oil and gas have been determined in the Qiangtang Basin. (9) A total of 21 prospecting areas of mineral resources have been delineated and thousands of ore-bearing (or mineralization) anomalies have been discovered. Additionally, the formation and uplift mechanism of the Plateau are briefly discussed in this paper.©2021 China Geology Editorial Office.  相似文献   
7.
Within the fault-bound Fushun Basin of northeastern China, the Eocene Jijuntun Formation hosts extensive deposits of thick lacustrine oil shale. Systematic sampling and geochemical analysis of these deposits has revealed that the parent rocks of the oil shale underwent moderate chemical weathering; and that its mineralogy and trace and rare earth element geochemistry were mainly controlled by parent rock composition, with no synsedimentary changes in the source terrain. Based on source rock and tectonic setting discrimination diagrams, we concluded that the parent rocks of the oil shale were mostly basalts of the Paleogene Laohutai Formation. These basalts originated in a continental back arc environment and contain abundant nutrient elements such as Fe, P, Ni, Cu and Zn, all of which are essential for the growth of aquatic photoautotrophs in lakes. Continuous, high primary productivity in the Jinjuntun lacustrine depocentre, combined with a stable tectonic setting and underfilled sedimentary environment, were key factors in the genesis of its oil shale.  相似文献   
8.
Turkana County, located in the arid region of northwestern Kenya, has long been imagined as backwards and unproductive. As a result, successive governments have neglected to provide adequate social services and investments in the county, leaving Turkanas to rely on humanitarian organisations for access to rights and protections traditionally associated with citizenship. Yet when oil was discovered in Turkana in 2012, the county was thrust into the international spotlight. The oil exploration and development activities that followed the oil discovery have already begun to impact life in Turkana. Accordingly, this paper focuses on changing social and political relationships in light of emergent spaces of enclave oil development in Turkana. Our analysis draws from key informant interviews, focus group discussions, and field observations carried out in Kenya between October 2014 and May 2015. Specifically, we demonstrate that the Kenyan state’s historically hands-off approach to governing this region has led some Turkanas to seek recognition, legitimization, and fulfillment for their rights from oil companies, rather than the state. We argue that this is drawing oil companies and rural communities into an uneasy citizen-state-like relationship, altering the experiences and practices of citizenship in Turkana. We conclude that while the presence of oil companies in Turkana may benefit some, it also works to the detriment of others, introducing new forms of inequality and marginalization – a process we refer to as ‘crude citizenship’.  相似文献   
9.
针对石南31井区储层岩性多变、油气水关系复杂等问题,按不同岩性识别油气层、水层和干层,据油气不同测井响应特征进一步识别油层和气层.将储层划分为细砂岩、中粗砂岩和砂砾岩3类,识别储层流体性质,分析油藏分布特征,指出油层、隔夹层平面分布特征,探讨油气水层分布规律.结果表明,石南31井区主要有4个油藏.储层所含流体有油、水和气,中北部细砂岩储层为纯油层,南部中粗砂岩储层为水层.气层从南到北分布于全区,主要位于油藏北部和东部局部区域,为今后解释工作具很好指导意义.  相似文献   
10.
实验模拟碳酸盐岩储层包裹体对油气充注的响应   总被引:3,自引:0,他引:3  
设计了一系列不同油水比(3/7,5/5,7/39,/1)的实验,以冰洲石为主矿物合成了烃类包裹体,为探讨碳酸盐岩烃类流体包裹体的形成机制提供了一条有效途径。镜下观察及显微荧光分析发现:样品中合成的包裹体沿裂隙分布,表明微裂隙愈合过程中捕获包裹体,烃类和盐水包裹体既同时出现在同一裂隙中,又有分带出现的情况。样品中合成的烃...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号