首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   48篇
  免费   6篇
  国内免费   13篇
大气科学   9篇
地球物理   21篇
地质学   3篇
海洋学   23篇
综合类   2篇
自然地理   9篇
  2016年   1篇
  2015年   1篇
  2014年   5篇
  2013年   3篇
  2012年   3篇
  2011年   3篇
  2010年   2篇
  2009年   3篇
  2008年   3篇
  2007年   2篇
  2006年   4篇
  2005年   2篇
  2004年   3篇
  2003年   2篇
  2002年   7篇
  2001年   2篇
  2000年   3篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   3篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1982年   1篇
  1978年   3篇
排序方式: 共有67条查询结果,搜索用时 15 毫秒
1.
大亚湾浮游植物光合作用特征   总被引:1,自引:1,他引:0  
利用Phyto-PAM测量大亚湾浮游植物的光合作用能力、非化学淬灭并建立快速光曲线,同时研究浮游植物群落结构、组成、丰度和相应的环境因素,分析光合作用特征与浮游植物生长和分布的耦合关系。本次调查期间大亚湾浮游植物以集群化硅藻为优势物种,各站位最大光量子收益达到0.72。大亚湾浮游植物适应高光强,当光照达到1000μE/(m2.s)时电子传递速率逐渐达到饱和;光照达到1500μE/(m2.s)浮游植物依然可进行光合作用,叶黄素循环保护光合器官使其免受高光强损伤;当光照达到1700μE/(m2.s)时,光合器官可能受到损伤,此时电子传递速率下降,实际光量子收益接近于0。集群化硅藻能够耐受较广的光照范围及其活跃的光合特征有利于它们在全球海区的广泛分布。  相似文献   
2.
秦松 《海洋与湖沼》1993,24(6):656-663
根据1992年8月30日-9月4日在日本名古层如开的第九届国际光合作用大会上交流的以藻类为材料的研究论文,综述了分子遗传学方面的研究成果。认为这些成果体现了光合作用研究的最新进展,蕴含有一定的应用前景;表明类分子遗传学不仅是藻类学研究领域的带头学科,而且已经活跃在光合作用等重大生物学问题研究的前沿;反映了藻类分子遗传学向解决生物学重大问题和推动藻类资料开发方向发展的趋势。  相似文献   
3.
海带(Laminaria japonica)幼孢子体生长和光合作用的N需求   总被引:2,自引:0,他引:2  
根据室内和围隔实验中海带幼孢子体在不同硝态氮浓度下的生长情况和光合作用速率(Pmax),分析了幼孢子体的N需求,得到其最大生长率(μm)为0.12d-1,维持生存的最低组织N含量(NQ)为16.8μg/mgDW,以最大生长率生长所必需组织N的临界值(NC)为20.4μg/mgDW,每天以最大速率生长的N需求(Nreq)为2.45μg/mgDWd-1。同时,不同处理组的初始NO3-N浓度越高,海带幼孢子体吸收速率和组织N的累加速率越高,且呈明显的线性相关关系(R2分别为0.8393和0.7793,P<0.05)。现场围隔实验中,叶绿素a含量(R2=0.7907,P<0.05)和组织N含量(R2=0.9147,P<0.01)与Pmax也呈明显的线性相关关系。同时,根据海带幼孢子体N的需求和营养吸收状况,分析认为,海带幼孢子体存在受到N限制的风险,但凭其营养吸收能力有适应N限制的能力。还根据海带的这种生理特征,探讨了大型海藻的养殖对富营养化海水的生态调控。  相似文献   
4.
苏翔  刘传联 《地球科学进展》2012,27(11):1274-1280
工业革命以来人类活动产生了大量二氧化碳气体(CO2)并释放到大气中。CO2溶于海水,造成海水pH值降低,改变海洋碳酸系统的平衡。海洋酸化对海洋生态系统特别是钙化生物构成威胁。颗石藻作为主要的钙化浮游生物,在海洋碳循环过程中起着重要的作用。大多数培养实验表明CO2浓度上升会促进颗石藻光合作用。而海洋酸化对不同种或不同品系颗石藻钙化作用产生不同的影响。  相似文献   
5.
In this article, we describe the dynamics of pH, O2 and H2S in the top 5–10 cm of an intertidal flat consisting of permeable sand. These dynamics were measured at the low water line and higher up the flat and during several seasons. Together with pore water nutrient data, the dynamics confirm that two types of transport act as driving forces for the cycling of elements (Billerbeck et al. 2006b): Fast surface dynamics of pore water chemistry occur only during inundation. Thus, they must be driven by hydraulics (tidal and wave action) and are highly dependent on weather conditions. This was demonstrated clearly by quick variation in oxygen penetration depth: Seeps are active at low tide only, indicating that the pore water flow in them is driven by a pressure head developing at low tide. The seeps are fed by slow transport of pore water over long distances in the deeper sediment. In the seeps, high concentrations of degradation products such as nutrients and sulphide were found, showing them to be the outlets of deep-seated degradation processes. The degradation products appear toxic for bioturbating/bioirrigating organisms, as a consequence of which, these were absent in the wider seep areas. These two mechanisms driving advection determine oxygen dynamics in these flats, whereas bioirrigation plays a minor role. The deep circulation causes a characteristic distribution of strongly reduced pore water near the low water line and rather more oxidised sediments in the centre of the flats. The two combined transport phenomena determine the fluxes of solutes and gases from the sediment to the surface water and in this way create specific niches for various types of microorganisms.  相似文献   
6.
7.
雨生红球藻光合和呼吸速率研究   总被引:9,自引:3,他引:6  
于1994年在青岛以单细胞雨生红球藻为实验材料,利用MCM改良配方制作培养洲,采用测溶解氧的方法,进行了光合和呼吸速率测定。结果表明,雨生红球藻光合速率、呼吸速率不仅与温度、光照强度有密切关系,同时还与其生活史中不同发育阶段有关。17℃、25℃、33℃时,雨生红球藻游动细胞光饱和点光强度分别为260μE/(m^2.s)、320μE/(m^2.s)、320μE/(m^2.s)左右,光补偿点光强分别为  相似文献   
8.
对汕头南澳岛潮间带海藻浒苔(Enteromorpha  相似文献   
9.
Changes of atmospheric CO2 concentration since 1958 are shown to be related to sea surface temperature changes. The largest contribution to changes arises from the Pacific equatorial upwelling region, with the Indian Ocean and Atlantic contributing only small fractions to the variance. It is hypothesized that the observed relationship is related to the nutrients that are brought up by upwelling cold water, with photosynthesis contributing to a lowering of the partial pressure of CO2 in the sea and thus to a greater tendency for a flux from the air to the sea.Possible longer term variations of sea temperature and CO2 are discussed.  相似文献   
10.
From time to time there appears in the literature the assertion that photolysis of water vapor could have maintained an appreciable concentration of oxygen in the primitive (prebiological) atmosphere. The implausibility of this assertion is argued in this paper.By itself, photolysis does not provide a source of oxygen because it is usually followed by recombination of the products of photolysis. Only the escape to space (at a much smaller rate) of the hydrogen produced by photolysis of water results in a net source of oxygen. The oxidation state of the primitive atmosphere depended on the relative magnitudes of this net source of oxygen and a volcanic source of hydrogen and other reduced gases. Today the volcanic source of reduced gases is approximately equal to the oxygen source provided by photolysis followed by escape. The oxygen source depends on the mixing ratio of water vapor in the stratosphere, which ultimately determines the rate of escape of hydrogen produced from water vapor. Its magnitude may not have been very different in the past. The volcanic source of hydrogen, on the other hand, is likely to have been much larger when the earth was tectonically young. Hydrogen was therefore released to the primitive atmosphere more rapidly than oxygen, probably. Photochemical reactions with the excess hydrogen maintained oxygen mixing ratios at negligibly small levels. The hydrogen mixing ratio was determined by a balance between the volcanic source (reduced by recombination with oxygen) and escape to space.In time, either because of decline of the volcanic source of hydrogen or because of addition of a biological source of oxygen, the input of oxygen to the atmosphere rose above the input of hydrogen. The oxidation state of the atmosphere changed rapidly. Volcanic hydrogen was now consumed by photochemical reactions with excess oxygen, while the oxygen mixing ratio was determined by a balance between the source (reduced by recombination with volcanic hydrogen) and consumption in reactions with reduced material at the surface.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号