首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   1篇
  国内免费   2篇
地球物理   4篇
海洋学   7篇
  2021年   1篇
  2016年   1篇
  2013年   2篇
  2011年   2篇
  2010年   1篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  1994年   1篇
排序方式: 共有11条查询结果,搜索用时 15 毫秒
1.
The composition and dynamics of the phytoplankton communities and hydrographic factors that control them are described for eastern and western Australia with a focus on the Eastern Australian Current (EAC) and Leeuwin Current (LC) between 27.5° and 34.5°S latitude. A total of 1685 samples collected from 1996 to 2010 and analysed for pigments by high performance liquid chromatography (HPLC) showed the average TChla (monovinyl+divinyl chlorophyll a) concentration on the west coast to be 0.28±0.16 ??g L−1 while it was 0.58±1.4 ??g L−1 on the east coast. Both coasts showed significant decreases in the proportions of picoplankton and relatively more nanoplankton and microplankton with increasing latitude. On both coasts the phytoplankton biomass (by SeaWiFS) increased with the onset of winter. At higher latitudes (>27.5°S) the southeast coast developed a spring bloom (September) when the mean monthly, surface chlorophyll a (chla) concentration (by SeaWiFS) was 48% greater than on the south west coast. In this southern region (27.5-34.5°S) Synechococcus was the dominant taxon with 60% of the total biomass in the southeast (SE) and 43% in the southwest (SW). Both the SE and SW regions had similar proportions of haptophytes; ∼14% of the phytoplankton community. The SW coast had relatively more pelagophytes, prasinophytes, cryptophytes, chlorophytes and less bacillariophytes and dinophytes. These differences in phytoplankton biomass and community composition reflect the differences in seasonality of the 2 major boundary currents, the influence this has on the vertical stability of the water column and the average availability of nutrients in the euphotic zone. Seasonal variation in mixed layer depth and upwelling on the west coast appears to be suppressed by the Leeuwin Current. The long-term depth averaged (0-100 m) nitrate concentration on the west coast was only 14% of the average concentration on the east coast. Redfield ratios for NO3:SiO2:PO4 were 6.5:11.9:1 on the east coast and 2.2:16.2:1 on the west coast. Thus new production (nitrate based) on the west coast was likely to be substantially more limited than on the eastcoast. Short term (hourly) rates of vertical mixing were greater on the east coast. The more stable water column on the west coast produced deeper subsurface chlorophyll a maxima with a 25% greater proportion of picoeukaryotes.  相似文献   
2.
The relative abundance of the different picoplankton components (eukaryotic picophytoplankton (Peuk), picocyanobacteria (Pcy) and bacterioplankton), and their relationships with the lake conditions were studied in three types of shallow lakes from the Pampa Plain (Argentina) that differ in their optical properties: clear-vegetated, phytoplankton-turbid and inorganic-turbid. All the selected lakes, but one, are characterized by their different alternative steady state (clear-vegetated and phytoplankton-turbid water phases) following the model proposed by Scheffer et al. (1993).Autotrophic and heterotrophic picoplankton abundances were analyzed seasonally in relation to environmental variables. All the lakes presented high concentrations of total nitrogen (TN) (>229 μg L−1), total phosphorus (TP) (>46 μg L−1) and dissolved organic carbon (DOC) (>13.7 mg L−1). Clear-vegetated lakes were characterized by vertical diffuse PAR (photosynthetic active radiation) attenuation coefficient (kdPAR) lower than 11 m−1, whereas inorganic-turbid lake always showed values higher than 21.1 m−1. The euphotic zone depth (Z1%) was wider in clear-vegetated lakes (40–140 cm) and thinner in the inorganic-turbid (10–20 cm). The phytoplankton-turbid lakes presented a wide range in the values of these variables (kdPAR: 5.2–35.8 m−1; Z1%: 10–90 cm). Phytoplankton chlorophyll-a (Chl-a) strongly differed, ranging from 1.6 to 334.6 μg L−1. Picophytoplankton was mainly represented by phycocianine-rich (PC-rich) Pcy in all cases, dominating over Peuk algae. The total and relative abundances of eukaryotic picophytoplankton, Pcy and bacterioplankton, as well as the size structure of the phytoplankton community differed among the water bodies. In general, clear-vegetated water bodies exhibited similar abiotic characteristics, picophytoplankton/bacterioplankton ratios, and phytoplankton size structure. Contrarily, no clear trend was identified for the group of turbid lakes. The contrasting results obtained for the importance of the picoplankton components in phytoplankton-turbid shallow lakes evidence that the availability of the energetical and nutrient resources cannot be solely considered to predict their relative importance in this type of shallow lake.  相似文献   
3.
张武昌  陈雪  赵苑  赵丽  肖天 《海洋科学集刊》2016,51(51):181-193
微食物环是海洋生态系统中重要的物质和能量过程,是传统食物链的有效补充。微食物环研究是当前海洋生态学研究的热点之一,但对其结构的系统研究较少,海洋微食物网结构在2000年才被Garrison提出。尽管微食物网各个类群的丰度在不同海洋环境中有相对变化,但是这些变化都处于一定的范围之内,其丰度结构约为纤毛虫10 cell ml-1、鞭毛虫103 cell ml-1、微微型真核浮游生物104 cell ml-1、蓝细菌104-5 cell ml-1、异养细菌106 cell ml-1、病毒107 particle ml-1。海洋浮游食物链中捕食者和饵料生物粒径的最佳比值为10:1,实际研究中该比值会略低,例如纤毛虫与其饵料的粒径比值为8:1,鞭毛虫为3:1。Pico和Nano浮游植物的丰度比(Pico:Nano)是研究微食物网结构的指数之一,该指数具有不受研究尺度影响的优点,可用于研究区域性和全球性微食物网结构。近年来,学者们从多角度对海洋微食物网的结构开展了研究,不同海区微食物网各类群丰度、生物量的时间和空间变化研究有很多报道,微食物网的结构可受空间、季节、摄食、营养盐等多种因素影响。在对不同空间微食物网的研究中,学者往往研究不同物理性质的水团中各类群生物丰度的不同,以此来表征微食物网结构的不同;同一海区微食物网结构的季节变化也是使用各个类群丰度和生物量的变化来表示,该变化主要受水文环境因素影响。摄食者对微食物网各类生物的影响通过三种途径:1. 中型浮游动物摄食;2. 中型浮游动物摄食微型浮游动物,通过营养级级联效应影响低营养级生物;3. 中型浮游动物通过释放溶解有机物、营养盐影响细菌和低营养级生物。浮游植物通过产生化感物质和溶解有机物影响微食物网结构,而营养盐的浓度及变化则可以对微食物网产生直接或间接影响。  相似文献   
4.
王艳  汪岷  杨琳  卢龙飞  王健  孙辉 《海洋与湖沼》2013,44(1):198-204
利用流式细胞仪对南黄海秋季浮游病毒丰度在水平分布和垂直分布上的特征进行了研究,并分析了浮游病毒丰度与异养细菌、微微型浮游植物等宿主丰度以及环境因子的相关性.结果表明,该海区秋季浮游病毒丰度在(2.22×106)-(1.60× 107)ind/ml之间,平均值8.32×106ind/ml.病毒丰度在调查海域的东北和中南部海域出现高值区,在西南部出现低值区,且浮游病毒丰度与异养细菌丰度的平面分布趋势较一致.在表层、中层和底层水体,浮游病毒丰度平均值分别为8.63×106、7.83×106、8.49×106ind/ml,表层和底层丰度无显著差异,但均高于中层(P<0.05).相关性分析表明,浮游病毒丰度与异养细菌丰度、VBR呈显著正相关(P<0.01),与微微型真核浮游植物丰度呈显著负相关(P<0.05),与聚球藻、水深、水温、盐度、溶氧、叶绿素a浓度无明显相关性(P>0.05).  相似文献   
5.
A systematic investigation of non-phosphorus containing glycolipids (GL) was conducted in the northern Adriatic Sea during two years at two stations with different nutrient loads. GL concentration varied both spatially and temporally, with values of 1.1–21.5 μg/L and 0.4–44.7 μg/L in the particulate and the dissolved fraction, respectively. The highest concentrations were measured during summer in surface waters and at the more oligotrophic station, where GL yields (% of total lipids) were often higher than 20% and 50% in the particulate and dissolved fractions, respectively. To obtain more insight into factors governing GL accumulation autotrophic plankton community structure (pico-, nano- and microplankton fractions), chlorophyll a, heterotrophic bacteria and nutrient concentrations were measured together with hydrographic parameters and sunlight intensity. During the investigated period smaller autotrophic plankton cells (pico- and followed by nanoplankton) prevailed in abundance over larger cells (microplankton), which were found in large numbers in freshened surface samples. Several major findings resulted from the study. Firstly, during PO4 limitation, particularly at the oligotrophic station, enhanced glycolipid instead of phospholipid accumulation takes place, representing an effective phosphate-conserving mechanism. Secondly, results suggest that at seawater temperatures >19 °C autotrophic plankton considerably accumulate GL, probably to achieve thermal stability. Thirdly, high sunlight intensities seem to influence increased GL accumulation; GL possibly plays a role in cell mechanisms that prevent/mitigate photooxidation. And finally, substantial accumulation of GL detected in the dissolved fraction could be related to the fact that GL do not contain biologically relevant elements, like phosphorus, which makes them an unattractive substrate for enzyme activity. Therefore, substantial portion of CO2 could be removed from the atmosphere in P-limited regions during summer via its capture by plankton and conversion to GL.  相似文献   
6.
Synechococci are small (<1 μm) coccoid prokaryotes that play a significant ecological role in microbial food webs and are important contributors to carbon and nitrogen biogeochemical cycles. Under funding from NOAA and NASA, we developed a time series observatory to understand the seasonal variability of Synechococcus and other phytoplankton. Our goal is to understand the distribution and relative contribution of Synechococcus to the carbon cycle and how they relate to nutrients and temperature. Synechococcus in the southern Mid-Atlantic Bight exhibited a clear seasonal abundance pattern in both inshore and offshore waters—peaking in abundance (11×104 cells ml−1) during warm periods of summer. Synechococci were numerically important during periods of stratification when waters were warm and macronutrients were low. Using a simple algorithm to convert cellular volume to cellular carbon using image analysis, we estimated that Synechococcus cellular carbon ranged from 0.1 to 1.5 pg C per cell and was most significant compared to total particulate carbon in the summer peaking at ∼25% of the total carbon available. No direct correlations were found between Synechococcus abundance and nitrate, nitrite, ammonium, phosphate, and silicate. However, inshore Synechococcus abundance peaked at 104 cells ml−1 when nitrogen concentrations were lowest. Our results suggest that Synechococcus is adapted to warm temperatures and are capable of demonstrating rapid growth during summer when macronutrients are limiting. The ability of Synechococcus to take advantage of high summer temperatures, low nutrient concentrations and low light levels allows them to maintain a picoplankton community during periods of low detritus and nanophytoplankton is nutrient limited. Temperature-dependence is important in altering the size spectrum of the phytoplankton community and affects the carbon cycle on the Mid Atlantic Bight.  相似文献   
7.
Vegetated wetlands are naturally subjected to changes in their water-level and macrophyte coverage leading to high habitat heterogeneity. The opportunistic ecological strategy of many planktic algae and bacteria makes them suitable for studying adaptive mechanisms to environmental change in wetlands at different temporal and spatial scales. In this study, we assessed the response of microbial aquatic organisms to sudden changes in habitat conditions, resulting from regime shifts involving the presence/absence of a dense floating-macrophyte cover, by means of a 72 h cross-transplant experiment using dialysis bags. Contrasting conditions imposed by the existing regime, such as light availability and dissolved oxygen concentration, accounted for the differences in phytoplankton and picoplankton compositions. Communities newly exposed to improved light and oxygen conditions exhibited a short-term (hours) response of C-strategists algae, such as small flagellated chrysophyceans. The onset of oxygen depletion and light impoverishment favoured the development of anaerobic anoxygenic photosynthetic bacteria (AnAnPB) and low-light adapted S-strategists (thin filamentous oscillatoriales) algae in few days. These results provide in-field evidence that phytoplankton and picoplankton assemblages are highly sensitive to environmental changes in a brief time scale, less than 72 h. Thus, these microbial organisms can act as sentinels to fluctuations in vegetated wetlands, also giving a quick response to sudden changes deriving from anthropogenic practices that impact on wetlands water-level and provoke fluctuations in their floating vegetation cover.  相似文献   
8.
The EDdy Dynamics, mixing, Export, and Species composition (EDDIES) project provided a unique opportunity to evaluate the response of the microbial community and further understand the biological and biogeochemical consequences of mesoscale perturbation events in an oligotrophic system. In order to characterize microbial dynamics, we performed measurements of bacterial biomass (BB) and production (BP) and phytoplankton pigment analyses in two upwelling eddies in the Sargasso Sea sampled in 2004 and 2005. We also observed a 3-fold increase in BP at the Bermuda Atlantic Time-series Study (BATS) site during the passage of a cyclonic eddy in 2003. Although the integrated BB and BP over 140 m in 2004 and 2005 eddies remained within the climatological range measured at the BATS site, there was systematic variability in bacterioplankton dynamics across both eddies. Cyclonic eddy C1 demonstrated decreased BP at the feature's center relative to its periphery, and BP was not correlated with total chlorophyll a (TChl a) variability. However, BP correlated with prymnesiophyte pigments throughout the feature. In contrast, mode-water eddy A4 showed an enhancement in BP at the eddy center (EC) relative to its edges and was coincident with elevated TChl a, high primary production measurements, and a high concentration of diatoms. In eddy A4, the tight relationship between enhanced BP, TChl a and specific phytoplankton taxa implies that the phytoplankton community structure was an important factor influencing BP variability. While the heterotrophic bacterial response in C1 and A4 was not enhanced relative to BATS summer climatology, these data and the presence of similar nutrient fields across both eddies suggest that BP and BB were influenced by the eddy perturbations and responded to changes in the phytoplankton community.  相似文献   
9.
The determination of heme b in marine phyto- and bacterioplankton   总被引:1,自引:0,他引:1  
Martha Gledhill   《Marine Chemistry》2007,103(3-4):393-403
A method for the quantification of heme b in marine phyto- and bacterioplankton is described. Heme b was extracted from filtered cells using a solution of 2.5% octyl β-glucopyranoside in 0.02 M ammonium hydroxide. The extract was analysed by high performance liquid chromatography diode array spectrophotometry. Maximum absorbance for heme b was at 400 nm. Heme b was separated from other pigments using a polystyrene divinyl benzene stationary phase and a gradient elution programme with 0.1% (v:v) nonafluoropentanoic acid in water and 50:50 (v:v) isopropanol:acetonitrile as the mobile phases. Heme b was quantified using Fe (III) protoporphyrin IX chloride (hemin) standards. The detection limit, calculated from 3 × s.d. of the lowest standard was 0.08 pmol or 1.57 nM with a 50 μL injection volume. The first data for heme b in marine phyto- and bacterioplankton are reported. Heme b contents are reported for the eukaryotes Thalassiosira weissflogii, Thalassiosira oceanica, Dunaliella tertiolecta and Emiliania huxleyi, and the prokaryotes Synechococcus WH8102, WH7803, RCC307, Erythrobacter litoralis, Roseobacter denitrificans and Vibrio natriegens. For T. weissflogii, T. oceanica, D. tertiolecta and E. huxleyi cellular heme b concentrations varied between 12 and 60 μmol L− 1 and chlorophyll a to heme b ratios varied between 216 and 309.  相似文献   
10.
厦门港微型浮游生物叶绿素的分布和作用   总被引:20,自引:1,他引:20  
于1989年2月-1990年2月,运用分光光度法对厦门港各大小类群浮游生物叶绿素测定结果表明,微型浮游生物(3-20μm)是初极生产者中的最主要组成者(叶绿素α平均占74.7%);小型(20-20μm)和极微型(<3μm)浮游生物不是重要类(平均占18.0和7.3%)。因此认为,在浮游植物定量研究中用采水方法采集浮游植物比用网采方法更客观。微型浮游生物量季节变化明显,夏季>春季>秋、冬季。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号