首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
地质学   1篇
海洋学   2篇
  2019年   1篇
  2008年   1篇
  2006年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
Land/ocean boundaries constitute complex systems with active physical and biogeochemical processes that affect the global carbon cycle. An example of such a system is the mesotidal lagoon named Ria de Aveiro (Portugal, 40°38′N, 08°45′W), which is connected to the Atlantic Ocean by a single channel, 350 m wide. The objective of this study was to estimate the seasonal and inter-tidal variability of organic carbon fluxes between the coastal lagoon and the Ocean, and to assess the contribution of the organic carbon fractions (i.e. dissolved organic carbon (DOC) and particulate organic carbon (POC)) to the export of organic carbon to the Ria de Aveiro plume zone. The organic carbon fractions fluxes were estimated as the product of the appropriate fractional organic carbon concentrations and the water fluxes calculated by a two-dimensional vertically integrated hydrodynamic model (2DH). Results showed that the higher exchanges of DOC and POC fractions at the system cross-section occurred during spring tides but only resulted in a net export of organic carbon in winter, totalling 85 t per tidal cycle. Derived from the winter and summer campaigns, the annual carbon mass balance estimated corresponded to a net export of organic carbon (7957 = 6585 t yr−1 POC + 1372 t yr−1 DOC). On the basis of the spring tidal drainage area, it corresponds to an annual flux of 79 g m−2 of POC and 17 g m−2 of DOC out of the estuary.  相似文献   
2.
The area of coastal rivers with a combination of fluvial, tidal and wave processes is defined as the fluvial to marine transition zone and can extend up to several hundreds of kilometres upstream of the river mouth. The aim of this study is to improve the understanding of sediment distribution and depositional processes along the fluvial to marine transition zone using a comprehensive dataset of channel bed sediment samples collected from the Mekong River delta. Six sediment types were identified and were interpreted to reflect the combined action of fluvial and marine processes. Based on sediment‐type associations, the Mekong fluvial to marine transition zone could be subdivided into an upstream tract and a downstream tract; the boundary between these two tracts is identified 80 to 100 km upstream of the river mouth. The upstream tract is characterized by gravelly sand and sand and occasional heterolithic rhythmites, suggesting bed‐load supply and deposition mainly controlled by fluvial processes with subordinate tidal influence. The downstream tract is characterized by heterolithic rhythmites with subordinate sand and mud, suggesting suspended‐load supply and deposition mainly controlled by tidal processes with subordinate fluvial influence. Sediment distributions during wet and dry seasons suggest significant seasonal changes in sediment dynamic and depositional processes along the fluvial to marine transition zone. The upstream tract shows strong fluvial depositional processes with subordinate tidal influence during the wet season and no deposition with weak fluvial and tidal processes during the dry season. The downstream tract shows strong coexisting fluvial and tidal depositional processes during the wet season and strong tidal depositional processes with negligible fluvial influence during the dry season. Turbidity maxima are present along the downstream tract of the fluvial to marine transition zone during both wet and dry seasons and are driven by a combination of fluvial, tidal and wave processes.  相似文献   
3.
The Konkouré Estuary in the Republic of Guinea is a poorly understood atypical mangrove system. Sediment dynamics in tropical estuaries are controlled by a combination of processes including river discharge, morphology, salinity, erosion and deposition processes, the settling of mud, physico-chemical processes and mangrove swamps. Here we present a consistent set of data aimed at characterising the estuary and thus, increasing our understanding of tropical systems, as well as studying the impact of human intervention in the region. Water elevations, current measurements, salinity, suspended sediment concentrations, bathymetry and sediment cover are presented following a 3 year survey of the Konkouré Estuary. Here we provide conclusive evidence that the Lower Konkouré is a shallow, funnel shaped, mesotidal, mangrove-fringed, tide dominated estuary, well mixed during low river discharge. The estuary becomes stratified during high river flows and spring tides whereas a salt wedge appears during neap tides. The Konkouré Estuary has been described as hypersynchronous, and has three terminal outlets, two of which are landward-directed, attesting to a tidal pumping effect, while the third one is seaward-directed, and is controlled by the mangrove. The suspended matter is transported by the tidal effect within the middle estuary and is therefore trapped in the Turbidity Maximum zone (TMZ). The location of the TMZ is river-controlled and is correlated with residual currents but not with salinity front. A dam, constructed 130 km upstream, impacts on the hydrodynamics, and reduces the salinity intrusion by about 25%. It causes an increased low river discharge whereas its efficiency over high river flows is unclear.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号