首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   0篇
  国内免费   2篇
海洋学   2篇
  2013年   2篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
According to the exploration contract about polymetallic sulfides in the SWIR (Southwest Indian Ridge) signed by China with the International Seabed Authority, to delineate sulfide minerals and estimate resource quantity are urgent tasks. We independently developed our first coincident loop Transient Electromagnetic Method (TEM) device in 2010, and gained the TEM data for seafloor sulfide at South Atlantic Ridge 13.2°S in June 2011. In contrast with the widely applied CSEM (Marine controlled-source electromagnetic) method, whose goal is to explore hydrocarbons (oil/gas) of higher resistivity than seawater from 102 to 103 m below the sea floor, the TEM is for low resistivity minerals, and the target depth is from 0 to 100 m below the sea floor. Based on the development of complex sulfide geoelectrial models, this paper analyzed the TEM data obtained, proposing a new method for seafloor sulfide detection. We present the preliminary trial results, in the form of apparent resistivity sections for both half-space and full-space conditions. The results cor- respond well with the observations of the actual hydrothermal vent area, and the detection depth reached 50-100m below the bed, which verified the capability of the equipment.  相似文献   
2.
Study of petrophysical properties of rocks in seafioor hydrothermal fields has great significance for inves- tigation of seafloor hydrothermal activities, especially for polymetallic sulfides prospecting. In the present study, based on the current experimental conditions, we conducted systematic experiments to measure the magnetic susceptibility, electrical resistivity, porosity, density, as well as acoustic wave velocity of seafloor rocks and sulfides. Subsequently, we measured the physical characteristics of hydrothermal sulfides, basalts and peridotites which were collected from newly discovered seafloor hydrothermal fields at 49.6°E, 50.5°E, 5 1°E, 63.5°E, and 63.9°E of the Southwest Indian Ridge (SWIR). Previously available and newly collected data were combined to characterize the physical differences between polymetallic sulfides and rocks. We also discussed the impact of hydrothermal alteration on the bedrock and demonstrated how these petrophysical properties of rocks can help in geophysical prospecting of seafloor hydrothermal fields as indicators.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号