首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   62篇
  免费   10篇
地球物理   3篇
天文学   69篇
  2023年   2篇
  2022年   1篇
  2021年   1篇
  2020年   5篇
  2019年   1篇
  2018年   1篇
  2015年   1篇
  2014年   6篇
  2012年   4篇
  2010年   4篇
  2009年   7篇
  2008年   6篇
  2007年   6篇
  2006年   6篇
  2005年   6篇
  2004年   2篇
  2003年   3篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1999年   4篇
  1997年   1篇
  1996年   1篇
排序方式: 共有72条查询结果,搜索用时 15 毫秒
1.
Halo coronal mass ejections (CMEs) have been to be significantly faster than normal CMEs, which is a long-standing puzzle. In order to solve the puzzle, we first investigate the observed properties of 31 limb CMEs that clearly display loopshaped frontal loops. The observational results show a strong tendency that slower CMEs are weaker in white-light intensity. Then, we perform a Monte Carlo simulation of 20000 artificial limb CMEs that have an average velocity of ~523km s -1. The Thomson scattering of thes...  相似文献   
2.
The term 'dynamo' means different things to the laboratory fusion plasma and astrophysical plasma communities. To alleviate the resulting confusion and to facilitate interdisciplinary progress, we pinpoint conceptual differences and similarities between laboratory plasma dynamos and astrophysical dynamos. We can divide dynamos into three types: 1. magnetically dominated helical dynamos which sustain a large-scale magnetic field against resistive decay and drive the magnetic geometry towards the lowest energy state, 2. flow-driven helical dynamos which amplify or sustain large-scale magnetic fields in an otherwise turbulent flow and 3. flow-driven non-helical dynamos which amplify fields on scales at or below the driving turbulence. We discuss how all three types occur in astrophysics whereas plasma confinement device dynamos are of the first type. Type 3 dynamos require no magnetic or kinetic helicity of any kind. Focusing on Types 1 and 2 dynamos, we show how different limits of a unified set of equations for magnetic helicity evolution reveal both types. We explicitly describe a steady-state example of a Type 1 dynamo, and three examples of Type 2 dynamos: (i) closed volume and time dependent; (ii) steady state with open boundaries; (iii) time dependent with open boundaries.  相似文献   
3.
The variation of the number of coronal mass ejections (CMEs) with different angular widths in the period of 1996-2008 is analyzed statistically in this paper, together with a comparison of the feature of time variation between the number of CMEs with some typical angular widths and the number of sunspots.  相似文献   
4.
In this paper, we analyze the interplanetary causes of eight great geomagnetic storms during the solar maximum (2000-2001). The result shows that the interplanetary causes were the intense southward magnetic field and the notable characteristic among the causal mechanism is compression. Six of eight great geomagnetic storms were associated with the compression of southward magnetic field, which can be classified into (1) the compression between ICMEs (2) the compression between ICMEs and interplanetary medium. It suggests that the compressed magnetic field would be more geoeffective. At the same time, we also find that half of all great storms were related to successive halo CMEs, most of which originated from the same active region. The interactions between successive halo CMEs usually can lead to greater geoeffectiveness by enhancing their southward field Bs interval either in the sheath region of the ejecta or within magnetic clouds (MCs). The types of them included: the compression between the fast speed transient flow and the slow speed background flow, the multiple MCs, besides shock compression. Further, the linear fit of the Dst versus gives the weights of and Δt as α=2.51 and β=0.75, respectively. This may suggest that the compression mechanism, with associated intense Bs, rather than duration, is the main factor in causing a great geomagnetic storm.  相似文献   
5.
6.
吴宁  李燕  沈呈彩  林隽 《天文学进展》2012,30(2):125-158
从理论和观测两个方面来介绍和讨论出现在太阳爆发过程中的磁重联电流片及其物理本质和动力学特征。首先介绍在理论研究和理论模型中,磁重联电流片是如何在爆发磁结构当中形成并发展的,对观测研究有什么指导意义。然后介绍观测工作是从哪几个方面对理论模型预测的电流片进行证认和研究的。第三,将介绍观测研究给出了哪些过去所没有能够预期的结果,这些结果对深入研究耀斑一CME电流片以及其中的磁重联过程的理论工作有什么重要的、挑战性的意义。第四,讨论最新的与此有关的理论研究和数值实验。最后,对未来的研究方向和重要课题进行综述和展望。  相似文献   
7.
Machine-learning algorithms are applied to explore the relation between significant flares and their associated CMEs. The NGDC flares catalogue and the SOHO/LASCO CME catalogue are processed to associate X and M-class flares with CMEs based on timing information. Automated systems are created to process and associate years of flare and CME data, which are later arranged in numerical-training vectors and fed to machine-learning algorithms to extract the embedded knowledge and provide learning rules that can be used for the automated prediction of CMEs. Properties representing the intensity, flare duration, and duration of decline and duration of growth are extracted from all the associated (A) and not-associated (NA) flares and converted to a numerical format that is suitable for machine-learning use. The machine-learning algorithms Cascade Correlation Neural Networks (CCNN) and Support Vector Machines (SVM) are used and compared in our work. The machine-learning systems predict, from the input of a flare’s properties, if the flare is likely to initiate a CME. Intensive experiments using Jack-knife techniques are carried out and the relationships between flare properties and CMEs are investigated using the results. The predictive performance of SVM and CCNN is analysed and recommendations for enhancing the performance are provided.  相似文献   
8.
By using Hα, He I 10830, EUV and soft X-ray (SXR) data, we examined a filament eruption that occurred on a quiet-sun region near the center of the solar disk on 2006 January 12, which disturbed a sigmoid overlying the filament channel observed by the GOES-12 SXR Imager (SXI), and led to the eruption of the sigmoid. The event was associated with a partial halo coronal mass ejection (CME) observed by the Large Angle and Spectrometric Coronagraphs (LASCO) on board the Solar and Heliospheric Observatory (SOHO), and resulted in the formation of two flare-like ribbons, post-eruption coronal loops, and two transient coronal holes (TCHs), but there were no significantly recorded GOES or Hα flares corresponding to the eruption. The two TCHs were dominated by opposite magnetic polarities and were located on the two ends of the eruptive sigmoid. They showed similar locations and shapes in He Ⅰ 10830, EUV and SXR observations. During the early eruption phase, brightenings first appeared on the locations of the two subsequent TCHs, which could be clearly identified on He Ⅰ 10830, EUV and SXR images. This eruption could be explained by the magnetic flux rope model, and the two TCHs were likely to be the feet of the flux rope.  相似文献   
9.
王桢  陈玲  吴德金 《天文学报》2023,64(3):37-260
无碰撞磁场重联作为一种将磁能有效转化为等离子体动能和热能的机制,已经被广泛应用于解释太阳耀斑、地球磁暴等各类等离子体的爆发活动.然而,在无碰撞重联区中反常电阻的微观物理机制仍然是尚未解决的基本问题.在众多反常电阻的形成机制中,基于磁零点附近粒子轨道混沌性产生的混沌感应电阻,虽然不是最普遍流行的形成机制,但它的微观物理图像却是最为清晰的.回顾了无碰撞重联区中混沌感应电阻的早期研究和基本理论模型,介绍了关于混沌感应电阻研究的新进展并阐述了混沌感应电阻未来的研究方向.  相似文献   
10.
We present B and V light curves of a large stellar flare obtained with the Wide Field Camera at the Isaac Newton 2.5‐m telescope (La Palma). The source object is a faint (mV = 21.38) foreground star in the field of the Andromeda galaxy, with its most probable spectral type being dM4. We provide an estimate of the total flare energy in the optical range and find it to be of the order of 1035 erg. The cooling phase of the large flare shows three additional weak flare‐like events, which we interpret as results of a triggering mechanism also observed on the Sun during large coronal mass ejections. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号