首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   93篇
  免费   0篇
测绘学   2篇
海洋学   1篇
天文学   90篇
  2019年   1篇
  2011年   7篇
  2010年   10篇
  2009年   13篇
  2008年   7篇
  2007年   17篇
  2006年   15篇
  2005年   5篇
  2004年   6篇
  2003年   7篇
  1995年   2篇
  1993年   3篇
排序方式: 共有93条查询结果,搜索用时 31 毫秒
1.
Man Hoi Lee  S.J. Peale 《Icarus》2006,184(2):573-583
Two small satellites of Pluto, S/2005 P1 (hereafter P1) and S/2005 P2 (hereafter P2), have recently been discovered outside the orbit of Charon, and their orbits are nearly circular and nearly coplanar with that of Charon. Because the mass ratio of Charon-Pluto is ∼0.1, the orbits of P2 and P1 are significantly non-Keplerian even if P2 and P1 have negligible masses. We present an analytic theory, with P2 and P1 treated as test particles, which shows that the motion can be represented by the superposition of the circular motion of a guiding center, the forced oscillations due to the non-axisymmetric components of the potential rotating at the mean motion of Pluto-Charon, the epicyclic motion, and the vertical motion. The analytic theory shows that the azimuthal periods of P2 and P1 are shorter than the Keplerian orbital periods, and this deviation from Kepler's third law is already detected in the unperturbed Keplerian fit of Buie and coworkers. In this analytic theory, the periapse and ascending node of each of the small satellites precess at nearly equal rates in opposite directions. From direct numerical orbit integrations, we show the increasing influence of the proximity of P2 and P1 to the 3:2 mean-motion commensurability on their orbital motion as their masses increase within the ranges allowed by the albedo uncertainties. If the geometric albedos of P2 and P1 are high and of order of that of Charon, the masses of P2 and P1 are sufficiently low that their orbits are well described by the analytic theory. The variation in the orbital radius of P2 due to the forced oscillations is comparable in magnitude to that due to the best-fit Keplerian eccentricity, and there is at present no evidence that P2 has any significant epicyclic eccentricity. However, the orbit of P1 has a significant epicyclic eccentricity, and the prograde precession of its longitude of periapse with a period of 5300 days should be easily detectable. If the albedos of P2 and P1 are as low as that of comets, the large inferred masses induce significant short-term variations in the epicyclic eccentricities and/or periapse longitudes on the 400-500-day timescales due to the proximity to the 3:2 commensurability. In fact, for the maximum inferred masses, P2 and P1 may be in the 3:2 mean-motion resonance, with the resonance variable involving the periapse longitude of P1 librating. Observations that sample the orbits of P2 and P1 well on the 400-500-day timescales should provide strong constraints on the masses of P2 and P1 in the near future.  相似文献   
2.
The temporary capture of the dust grains in the exterior resonances with planets is studied in the frames of the planar circular three-body problem with Poynting-Robertson (PR) drag. For the Earth and particles ~ 10 m the resonances 4/5, 5/6, 6/7, 7/8 are shown to be most effective. The capture is only temporary (of order 105 years) and the position of resonance may be calculated from semi-analytical model using averaged disturbing function. These semi-analytical results are confirmed by numerical integration. For various planet this picture changes as with increasing planetary mass the more exterior resonances become more important. We showed that for Jupiter (at least in the space between Jupiter and Saturn) the resonance 1/2 plays the dominant role. The capture time is here several myr but again eccentricity is evolving to eccentricity e 0 ~ 0.48 of libration point for this resonance.  相似文献   
3.
We discuss the main mechanisms affecting the dynamical evolution of Near-Earth Asteroids (NEAs) by analyzing the results of three numerical integrations over 1 Myr of the NEA (4179) Toutatis. In the first integration the only perturbing planet is the Earth. So the evolution is dominated by close encounters and looks like a random walk in semimajor axis and a correlated random walk in eccentricity, keeping almost constant the perihelion distance and the Tisserand invariant. In the second integration Jupiter and Saturn are present instead of the Earth, and the 3/1 (mean motion) and v 6 (secular) resonances substantially change the eccentricity but not the semimajor axis. The third, most realistic, integration including all the three planets together shows a complex interplay of effects, with close encounters switching the orbit between different resonant states and no approximate conservation of the Tisserand invariant. This shows that simplified 3-body or 4-body models cannot be used to predict the typical evolution patterns and time scales of NEAs, and in particular that resonances provide some fast-track dynamical routes from low-eccentricity to very eccentric, planet-crossing orbits.On leave from the Department of Mathematics, University of Pisa, Via Buonarroti 2, 56127 Pisa, Italy, thanks to the G. Colombo fellowships of the European Space Agency.  相似文献   
4.
We present here the numerical application of the theoretical results derived in Correia et al. (2003, Icarus 163, 1-23) for the spin evolution of Venus since its formation. We explore a large variety of initial conditions to cover the possible formation and evolutionary scenarios. In particular, we pay special attention to the evolutions which cross the chaotic zone resulting from secular planetary perturbations (Laskar and Robutel, 1993, Nature 361, 608-612). We demonstrate that Venus’ axis can be temporarily trapped in a secular resonance with the node of Neptune’s orbit, which can prevent it from being tilted to 180° and will drive it toward 0°. We test several dissipation models and parameters to evaluate their contribution to the planet’s spin history. We confirm that despite the variations in the models, only three of the four final spin states of Venus are possible (Correia and Laskar, 2001, Nature 411, 767-770) and that the present observed retrograde spin state of Venus can be attained by two different processes. In the first scenario (π−), the axis is tilted toward 180° while its rotation rate slows down, while in the second one, the axis is driven toward 0° obliquity and the rotation rate decreases, stops, and increases again in the reverse direction to a final equilibrium value (0−).  相似文献   
5.
J. Schubart 《Icarus》2007,188(1):189-194
Inside the 3/2 mean motion resonance some Hilda-type orbits show effects of a three-body resonance that includes the frequency of the libration due to the 3/2 resonance. A graphical method presents numerical results for such orbits and demonstrates in 6 cases a process of temporary libration, that is ruled by the additional resonance together with the secular period of the eccentricities of Jupiter and Saturn.  相似文献   
6.
We describe a powerful signal processing method, the continuous wavelet transform, and use it to analyze radial structure in Cassini ISS images of Saturn's rings. Wavelet analysis locally separates signal components in frequency space, causing many structures to become evident that are difficult to observe with the naked eye. Density waves, generated at resonances with saturnian satellites orbiting outside (or within) the rings, are particularly amenable to such analysis. We identify a number of previously unobserved weak waves, and demonstrate the wavelet transform's ability to isolate multiple waves superimposed on top of one another. We also present two wave-like structures that we are unable to conclusively identify. In a multi-step semi-automated process, we recover four parameters from clearly observed weak spiral density waves: the local ring surface density, the local ring viscosity, the precise resonance location (useful for pointing images, and potentially for refining saturnian astrometry), and the wave amplitude (potentially providing new constraints upon the masses of the perturbing moons). Our derived surface densities have less scatter than previous measurements that were derived from stronger non-linear waves, and suggest a gentle linear increase in surface density from the inner to the mid-A Ring. We show that ring viscosity consistently increases from the Cassini Division outward to the Encke Gap. Meaningful upper limits on ring thickness can be placed on the Cassini Division (3.0 m at r∼118,800 km, 4.5 m at r∼120,700 km) and the inner A Ring (10-15 m for r<127,000 km).  相似文献   
7.
We have performed new simulations of two different scenarios for the excitation and depletion of the primordial asteroid belt, assuming Jupiter and Saturn on initially circular orbits as predicted by the Nice Model of the evolution of the outer Solar System [Gomes, R., Levison, H.F., Tsiganis, K., Morbidelli, A., 2005. Nature 435, 466-469; Tsiganis, K., Gomes, R., Morbidelli, A., Levison, H.F., 2005. Nature 435, 459-461; Morbidelli, A., Levison, H.F., Tsiganis, K., Gomes, R., 2005. Nature 435, 462-465]. First, we study the effects of sweeping secular resonances driven by the depletion of the solar nebula. We find that these sweeping secular resonances are incapable of giving sufficient dynamical excitation to the asteroids for nebula depletion timescales consistent with estimates for solar-type stars, and in addition cannot cause significant mass depletion in the asteroid belt or produce the observed radial mixing of different asteroid taxonomic types. Second, we study the effects of planetary embryos embedded in the primordial asteroid belt. These embedded planetary embryos, combined with the action of jovian and saturnian resonances, can lead to dynamical excitation and radial mixing comparable to the current asteroid belt. The mass depletion driven by embedded planetary embryos alone, even in the case of an eccentric Jupiter and Saturn, is roughly 10-20× less than necessary to explain the current mass of the main belt, and thus a secondary depletion event, such as that which occurs naturally in the Nice Model, is required. We discuss the implications of our new simulations for the dynamical and collisional evolution of the main belt.  相似文献   
8.
Patrick Michel  Marco Delbo 《Icarus》2010,209(2):520-534
In this paper, we present our study of the orbital and thermal evolutions, due to solar radiative heating, of four near-Earth asteroids (NEAs) considered as potential target candidates for sample return space missions to primitive asteroids. We used a dynamical model of the NEA population to estimate the most likely source region and orbital history of these objects. Then, for each asteroid, we integrated numerically over their entire lifetime a set of 14 initially indistinguishable orbit (clones), obtained by small variations of the nominal initial conditions. Using a thermal model, we then computed surface and sub-surface temperatures of these bodies during their dynamical history. Our aim is to determine whether these bodies are likely to have experienced high temperature level, and whether great temperature changes can be expected due to the orbital changes as well as their maximum and minimum values. Such information is important in the framework of sample return space missions whose goal is to bring back pristine materials. The knowledge of the temperature range of materials at different depth over the orbital evolution of potential targets can help defining sampling strategies that ensure the likelihood that unaltered material will be brought back. Our results suggest that for all the considered potential targets, the surface has experienced for some time temperatures greater than 400 K and at most 500 K with 50% probability. This probability drops rapidly with increasing temperature. Sub-surface materials at a depth of only 3 cm are much more protected from high temperature and generally do not reach temperatures exceeding 450 K (with 50% probability). They should thus be unaltered at this depth at least from a Sun-driven heating point of view. On the other hand, surface material for some of the considered objects can have a range of temperature which can make them less reliable as pristine materials. However, it is assumed here that the same material is constantly exposed to solar heat, while regolith turnover may occur. The latter can be caused by different processes such as seismic shaking and/or impact cratering. This would reduce the total time that materials are exposed to a certain temperature. Thus, it is very likely that a sample collected from any of the four considered targets, or any primitive NEA with similar dynamical properties, will have components that will be thermally unaltered as long as some of it comes from only 3 to 5 cm depth. Such a depth is not considered difficult to reach with some of the current designs of sampling devices.  相似文献   
9.
William T. Reach 《Icarus》2010,209(2):848-850
Interplanetary dust particles from comets and asteroids pervade the Solar System and become temporarily trapped into orbital resonances with Earth, leading to a circumsolar dust ring. Using the unique vantage point of the Spitzer Space Telescope from its Earth-trailing solar orbit, we have measured for the first time the azimuthal structure of the Earth’s resonant dust ring. There is a relative paucity of particles within 0.1 AU of the Earth, followed by an enhancement in a cloud that is centered 0.2 AU behind Earth with a width of 0.08 AU along the Earth’s orbit. The North ecliptic pole is ∼3% brighter at 8 μm wavelength when viewed from inside the enhancement. The presence of azimuthal asymmetries in debris disks around other stars is considered strong evidence for planets. By measuring the properties of the Earth’s resonant ring, we can provide “ground truth” to models for interactions of planets and debris disks, possibly leading to improved predictions for detectability of life-bearing planets. The low amplitude of the azimuthal asymmetry in the Earth’s circumsolar ring suggests significant contributions to the zodiacal light from particles that are large (>30 μm) or have large orbital eccentricity that makes capture into mean motion resonances inefficient.  相似文献   
10.
Benoît Noyelles 《Icarus》2010,207(2):887-902
The saturnian coorbital satellites Janus and Epimetheus present a unique dynamical configuration in the Solar System, because of high-amplitude horseshoe orbits, due to a mass ratio of order unity. As a consequence, they swap their orbits every 4 years, while their orbital periods is about 0.695 days. Recently, Tiscareno et al. (Tiscareno, M.S., Thomas, P.C., Burns, J.A. [2009]. Icarus 204, 254-261) got observational informations on the shapes and the rotational states of these satellites. In particular, they detected an offset in the expected equilibrium position of Janus, and a large libration of Epimetheus.We here propose to give a three-dimensional theory of the rotation of these satellites in using these observed data, and to compare it to the observed rotations. We consider the two satellites as triaxial rigid bodies, and we perform numerical integrations of the system in assuming the free librations as damped.The periods of the three free librations we get, associated with the three dimensions, are respectively 1.267, 2.179 and 2.098 days for Janus, and 0.747, 1.804 and 5.542 days for Epimetheus. The proximity of 0.747 days to the orbital period causes a high sensitivity of the librations of Epimetheus to the moments of inertia. Our theory explains the amplitude of the librations of Janus and the error bars of the librations of Epimetheus, but not an observed offset in the orientation of Janus.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号